欧几里得算法与扩展欧几里得算法(求二元一次不定方程、乘法逆元)

1.欧几里得算法,即辗转相除法。用于求两个整数的最大公约数比较方便,时间复杂度为O(logN)N为两个整数的规模。
最大公约数,是能够同时被两个整数整除的最大整数。
比如说,求56和21的最大公约数:(每行数分别代表a=56,b=21,a%b)
56 21 14
21 14 7
14 7 0
7 0
此时得到最大公约数为7。
递归代码如下:

int gcd(int a, int b)
{
	return b ? gcd(b, a%b) : a;
}

2.扩展欧几里得算法
顾名思义,扩展欧几里得算法就是对欧几里得算法的扩展,可以应用于求二元一次方程的通解、乘法逆元等。
对于上面的欧几里得算法,当递归到出口时,a=7,b=0。很容易就可以得到一组ax+by=7的解:x=1,y=0。
那么如何通过7x+y=7的解逆推出56x+21y=7的解呢?

	对于欧几里得算法的每一个状态,都存在ax+by=gcd(a,b)的解,我们假设有这样两组解(且他们为相邻状态):
	ax1+by1=gcd(a,b)
	a'x2+b'y2=gcd(a',b')
	
	那么可以知道:a'=b  b'=a%b  且gcd(a',b')=gcd(b,a%b)=gcd(a,b),所以有
	ax1+by1=bx2+(a%b)y2    另a%b可写为 a-a/b
	
	所以有  ax1+by1=bx2+(a-(a/b)b)y2
	故	ax1+by1=ay2+bx2+(a/b)by2
	故	ax1=ay2   by1 = b(x2+ (a/b)by2)
	故     x1=y2    y1 = x2 +(a/b)y2
	

故可以得到x1,y1与x2,y2的关系 : x1=y2 y1 = x2 +(a/b)y2
我们已知的是最后一组解,那么就要根据最后一组解逆推上去,就可以得到ax+by=gcd(a,b)的一组解了。
代码如下:

int exgcd(int a, int b, int&x, int &y)
{
	if (!b)
	{
		x = 1;
		y = 0;
		return a;
	}
	int r = exgcd(b, a%b, x, y);  //递归到求出公约数,开始倒着求每一组的x,y。最后就得到这样一组特解了。
	int t = x;
	x = y;
	y = t - (a / b)*y;
	return r;
}

现在,通过扩展欧几里得算法,可以求出ax+by=gcd(a,b)的一组特解。那么如何求其通解呢?

3.二元一次方程通解
假设求得的特解为ax0+by0=r ,r=gcd(a,b).
ax0+by0+ab*k-ab*k=r
a(x0+b*k)+b(y0-a*k)=r
x=x0+b*k 、y=y0-a*k
这样写,可能不同组解的跨度太大了,所以可以写成
x=x0+(b/r)*k 、 y=y0-(a/r)*k

对于ax+by =c,而c不是a和b的最大公约数 ,其通解可以用 ax+by=gcd(a,b)的通解乘上 c/gcd(a,b)即可。

这里好像有一个贝祖定理::对于给定的正整数a,b,方程ax+by=c有整数解的充要条件为c是gcd(a,b)的整数倍。

4.乘法逆元
另外,扩展欧几里得算法还可以用来求乘法逆元,首先看乘法逆元的定义:
如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x。通俗点讲就是 a*x的结果取余p为1。这样就可以转换成求ax+py=1的解。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值