bzoj 2839: 集合计数【容斥原理+组合数学】

首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数……
在n个数中选i个的方案数是\( C_{n}^{i} \),n种集合的组合方案数为\( 2^n \)
并集至少有i个元素的方案数即为选\( i \)个元素的方案数\( C_{n}^{i} \),乘上剩下\( n-i \)个元素任意组合的方案数\( 2^{2^{n-i}-1} \)
然后乘上容斥系数\( (-1)^{i-k} \),再乘上在并集的\( i \)个元素中选择\( k \)个元素的方案数\( C_{i}^{k} \)
答案即为:\( ans=\sum_{i=k}^{i<=n}(-1)^{i-k}*C_{n}^{i}*C_{i}^{k}*2^{2^{n-i}-1} \),ans可能为负数,记得最后\( ans=(ans\%mod+mod)\%mod \)

#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=1e9+7,N=1000005;
long long n,k,inv[N],fac[N],ans;
long long ksm(long long a,long long b)
{
    long long r=1ll;
    while(b)
    {
        if(b&1)
            r=r*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return r;
}
long long C(long long n,long long m)
{
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
    scanf("%lld%lld",&n,&k);
    fac[0]=1;
    for(long long i=1;i<=n;i++)
        fac[i]=fac[i-1]*i%mod;//,cout<<fac[i]<<" ";
    inv[n]=ksm(fac[n],mod-2);
    for(long long i=n-1;i>=0;i--)
        inv[i]=inv[i+1]*(i+1)%mod;//,cout<<inv[i]<<endl;;
    for(long long i=n,b=2;i>=k;i--,b=b*b%mod)
        ans=(ans+((((i-k)&1)?-1:1)*C(n,i)%mod*C(i,k)%mod*(b+mod-1)%mod))%mod;
    printf("%lld",(ans%mod+mod)%mod);
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/8213459.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值