训练集测试集划分 train_test_split(X, y, stratify=y)

from sklearn.model_selecting import train_test_spilt()
参数stratify: 依据标签y,按原数据y中各类比例,分配给train和test,使得train和test中各类数据的比例与原数据集一样。

例如:A:B:C=1:2:3
split后,train和test中,都是A:B:C=1:2:3
将stratify=X就是按照X中的比例分配
将stratify=y就是按照y中的比例分配
一般都是=y

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html

 

 TF-IDF (Term Frequency - Inverse Document Frequency)

TfidfVectorizer 参数意义:

 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer.build_tokenizer

 

 

详细解释:

https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

转载于:https://www.cnblogs.com/Allen-rg/p/10598144.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值