将数据集切分成“训练-测试数据集”和交叉验证

本文介绍了如何将数据集划分为训练集和测试集,使用sklearn的train_test_split函数,并探讨了为解决一次性测试带来的问题而采用的交叉验证方法,包括sklearn提供的几种交叉验证策略。
摘要由CSDN通过智能技术生成

如何将数据集划分为测试数据集和训练数据集?

把数据集分为两部分:分别用于训练和测试

sklearn提供一个将数据集切分成训练集和测试集的函数。

from sklearn.cross_validation import train_test_split
Xd_train,Xd_test,y_train,y_test=train_test_split(X_d,y,random_state=14)


得到两个数据集,训练集Xd_train 和测试集Xd_test。y_train和y_test分别是以上两个数据集的类别信息。

train_test_split功能:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值