bzoj 4698: Sdoi2008 Sandy的卡片【SAM】

本文深入探讨了一种利用差分和Suffix Array Matching (SAM)算法来求解最长公共子序列(LCS)问题的方法。通过实例代码,详细解释了如何通过差分处理输入序列,构建SAM树,并运用动态规划求解LCS长度,最终得出优化后的解决方案。
摘要由CSDN通过智能技术生成

差分之后用SAM求LCS,然后答案就是LCS+1

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=2005;
int n,m,s[N],b[N],fa[N],ch[N][205],dis[N],cur=1,con=1,la,f[N][N],c[N],a[N],ans;
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void ins(int c,int id)
{
    la=cur,dis[cur=++con]=id;
    int p=la;
    for(;p&&!ch[p][c];p=fa[p])
        ch[p][c]=cur;
    if(!p)
        fa[cur]=1;
    else
    {
        int q=ch[p][c];
        if(dis[q]==dis[p]+1)
            fa[cur]=q;
        else
        {
            int nq=++con;
            dis[nq]=dis[p]+1;
            memcpy(ch[nq],ch[q],sizeof(ch[q]));
            fa[nq]=fa[q];
            fa[q]=fa[cur]=nq;
            for(;ch[p][c]==q;p=fa[p])
                ch[p][c]=nq;
        }
    }
}
int main()
{
    m=read(),n=read();
    for(int i=1;i<=n;i++)
        s[i]=read();
    for(int i=1;i<n;i++)
        ins(s[i+1]-s[i]+101,i);
    for(int i=1;i<=con;i++)
        f[i][1]=dis[i];
    for(int j=2;j<=m;j++)
    {
        n=read();
        for(int i=1;i<=n;i++)
            s[i]=read();
        for(int i=1,p=1,len=0;i<n;i++)
        {
            int c=s[i+1]-s[i]+101;
            if(ch[p][c])
                len++,p=ch[p][c],f[p][j]=max(f[p][j],len);
            else
            {
                for(;p&&!ch[p][c];p=fa[p]);
                if(!p)
                    p=1,len=0;
                else
                    len=dis[p]+1,p=ch[p][c],f[p][j]=max(f[p][j],len);
            }
        }
    }
    for(int i=1;i<=con;i++)
        c[dis[i]]++;
    for(int i=1;i<=con;i++)
        c[i]+=c[i-1];
    for(int i=1;i<=con;i++)
        a[c[dis[i]]--]=i;
    for(int j=2;j<=m;j++)
        for(int i=con;i>=1;i--)
            f[fa[a[i]]][j]=max(f[fa[a[i]]][j],f[a[i]][j]);
    for(int i=1;i<=con;i++)
    {
        for(int j=2;j<=m;j++)
            f[i][1]=min(f[i][1],f[i][j]);
        ans=max(ans,f[i][1]);
    }
    printf("%d\n",ans+1);
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/10008609.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值