补充资料:非诺伊曼型计算机
非诺伊曼型计算机
non-Neumann computer
电子计算机适合按确定的公式进行运算,识别上述复杂的图像需要几十一亿次运算才能完成,所以,人们试图模仿人脑神经元和神经网络系统的结构和工作模式来设计计算机。神经计算机由许多处理单元和互联网络组成,处理单元可以同时运行,其并行工作模式类似人脑的工作方式。神经计算机具有学习功能,但神经网络与专家系统又不同,专家系统处理问题依赖于预先确定的规则,神经网络则不然,是根据信息解决问题的,是一种教授学习的过程。例如,为了识别字母A,要教神经计算机识别字母A,经多次示范,神经计算机进行自我调整内部状态,就学会了识别字母A,从而具有了识别字母A的能力。 人工智能、数据库管理、实时仿真等应用都需要速度极高的计算机,为此一方面要寻求高速半导体数字逻辑器件,用以制造超高速计算机;另一方面,由干半导体器件的速度有物理极限,因此,探索新型的计算机和逻辑器件,包括非诺伊曼型计算机、光计算机和分子计算机等就成为新一代计算机研究的主要内容。 (于士齐)feinuoyilnQnxing iisuQnii非诺伊曼型计算机(n。n一NeumannoomPuter)数字计算机的工作模式与经典的诺伊曼型计算机的工作模式有实质性差别的计算机,统称为非诺伊曼型计算机。 1946年美籍匈牙利数学家J.冯·诺伊曼和他的同事提出了题为《电子计算机的逻辑设计初探》的著名报告,该报告给出的计算机基本结构具有存储式程序和程序计数器两大特点。后来通常就把具有这些基本特性的数字电子计算机称为诺伊曼型计算机。所谓存储式程序就是程序的指令和数据均存储在存储器中,并同数据一样可对指令进行读、写及修改操作,由中央处理器(CPU)决定从主存储器读出的代码作为指令被执行还是作为数据参加运算。所谓程序计数器是一计数寄存器,它存放将被执行指令的地址,并且每执行完一条指令就自动递增或被重新赋值,这样实现了按指令地址顺序执行指令或转去执行某个指令地址的指令。 为了提高计算机的处理速度,计算机结构在经典诺伊曼型的基础上,发展为较 复杂的有一定并行处理能力的流水线、数组处理和多道处理等结构,但它们都没有根本改变诺伊曼型计算机的顺序执行计算机指令的模式。由多个诺伊曼型计算机组成的并行处理系统,固然可以提供较高的处理速度,但是很难编制这种并行处理系统的程序。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。