bzoj3280: 小R的烦恼(最小费用最大流)

Description

小R最近遇上了大麻烦,他的程序设计挂科了。于是他只好找程设老师求情。善良的程设老师答应不挂他,但是要
求小R帮助他一起解决一个难题。问题是这样的,程设老师最近要进行一项邪恶的实验来证明P=NP,这个实验一共
持续n天,第i天需要a[i]个研究生来给他搬砖。研究生毕竟也是人,所以雇佣研究生是需要钱的,机智的程设老师
已经联系好了m所大学,第j所大学共有l[j]个研究生,同时雇佣这所大学的一个研究生需要p[j]元钱。本来程设老
师满心欢喜的以为,这样捡最便宜的max{a[i]}个研究生雇来,就可以完成实验;结果没想到,由于他要求硕士生
们每天工作25个小时不许吃饭睡觉上厕所喝水说话咳嗽打喷嚏呼吸空气,因此一天下来给他搬砖的所有研究生都会
进入濒死状态。濒死状态的研究生,毫无疑问,就不能再进行工作了。但是机智的老师早早联系好了k家医院,第i
家医院医治一个濒死的研究生需要d[i]天,并且需要q[i]元钱。现在,程设老师想要知道,最少花多少钱,能够在
这n天中满足每天的需要呢?若无法满足,则请输出”impossible”。注意,由于程设老师良心大大的坏,所以他
是可以不把濒死的研究生送去医院的!。

Input

本题包含多组数据;第一行是一个数T(T<=11),表示数据组数,以下T组数据。
对于每一组数据,第一行三个数,n,m,k;
以下一行n个数,表示a[1]…a[n]
接着一行2m个数,表示l[1],p[1]…l[n],p[n]
接着一行2k个数,表示d[1],q[1]…d[n],q[n]
n,m,k<=50,其余数均小于等于100.

Output

对于每组数据以样例的格式输出一行,两个数分别表示第几组数据和最少钱数。

Sample Input

2
3 2 1
10 20 30
40 90 15 100
1 5
3 2 1
10 20 30
40 90 15 100
2 5

Sample Output

Case 1: 4650
Case 2: impossible

样例解释:

买下90块钱的那40个研究生,另外再买10个100块钱的。这样,第一天用完的10个人全部送到医院,那么他们在第
三天可以继续使用;同时,第二天和第三天都用新的研究生来弥补,这样一共需要花费4090 + 10100 + 5*10 = 4650元。

题解

最小费用最大流

首先,建\(m\)个点,限制学校

注意,每天都会留下\(a[i]\)濒死的研究生
那么,我们建\(n\)个节点,表示一天后,剩下的濒死的研究生数量,\(x->x+1\)连一条\((inf,0)\)的边
表示留到下一天

再建\(n\)个节点限制每天的需求

然后根据题面连边

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register

using namespace std;
template<class T> inline void read(T &x) {
    x = 0; RG char c = getchar(); bool f = 0;
    while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
    while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
    x = f ? -x : x;
    return ;
}
template<class T> inline void write(T x) {
    if (!x) {putchar(48);return ;}
    if (x < 0) x = -x, putchar('-');
    int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
    for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}

const int N = 200, inf = 2147483647;
struct node {
    int to, nxt, w, v;
}g[2000000];
int last[N], gl = 1;
void add(int x, int y, int w, int v) {
    g[++gl] = (node) {y, last[x], w, v};
    last[x] = gl;
    g[++gl] = (node) {x, last[y], 0, -v};
    last[y] = gl;
}

int dis[N], pre[N], from[N], s, t;
queue<int> Q;
bool vis[N];

bool spfa() {
    memset(dis, 127, sizeof(dis));
    dis[s] = 0;
    Q.push(s);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        for (int i = last[u]; i; i = g[i].nxt) {
            int v = g[i].to;
            if (g[i].w && dis[v] > dis[u] + g[i].v) {
                dis[v] = dis[u] + g[i].v; pre[v] = u; from[v] = i;
                if (!vis[v]) {
                    vis[v] = 1;
                    Q.push(v);
                }
            }
        }
        vis[u] = 0;
    }
    return dis[t] != dis[0];
}

int cost, flow, n, m, k, l[N], p[N], d[N], q[N], a[N];
void Mcmf() {
    cost = flow = 0;
    while (spfa()) {
        int di = inf;
        for (int i = t; i != s; i = pre[i]) di = min(di, g[from[i]].w);
        cost += dis[t]*di; flow += di;
        for (int i = t; i != s; i = pre[i]) g[from[i]].w -= di, g[from[i]^1].w += di;
    }
}

void init() {
    gl = 1; memset(last, 0, sizeof(last));
    s = n*2+m+1, t = s+1;
    for (int i = 1; i <= m; i++) add(s, i, l[i], p[i]);
    for (int i = 1; i <= n; i++) {
        add(s, i+m, a[i], 0); add(i+m+n, t, a[i], 0);
        if (i < n)
            add(i+m, i+m+1, inf, 0);
        for (int j = 1; j <= m; j++)
            add(j, m+n+i, inf, 0);
    }
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= k; j++)
            if (i + d[j] < n) 
                add(i+m, m+n+i+d[j]+1, inf, q[j]);
}

int main() {
    int T; read(T);
    for (int x = 1; x <= T; x++) {
        int sum = 0;
        read(n), read(m), read(k);
        for (int i = 1; i <= n; i++) read(a[i]), sum += a[i];
        for (int i = 1; i <= m; i++) read(l[i]), read(p[i]);
        for (int i = 1; i <= k; i++) read(d[i]), read(q[i]);
        init();
        Mcmf();
        if (flow == sum)
            printf("Case %d: %d\n", x, cost);
        else printf("Case %d: impossible\n", x); 
    }       
    return 0;
}

转载于:https://www.cnblogs.com/zzy2005/p/10297343.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值