严格对角占优矩阵

本文介绍了严格对角占优矩阵的概念及其三大性质:1. 关于该矩阵的线性代数方程组总有解;2. 该矩阵是非奇异矩阵;3. 在数值求解中,几种迭代法均会收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

则称A为严格对角占优矩阵

即:每一行中对角元素的值的模 > 其余元素值的模之和。

 

性质:

1,若A是严格对角占优矩阵,则关于它的线性代数方程组有解。
2,若A为严格对角占优矩阵,则A为非奇异矩阵。
3,若A为严格对角占优矩阵,则雅克比迭代法、高斯-赛德尔迭代法和0<ω≤1的超松弛迭代法均收敛。

 

转载于:https://www.cnblogs.com/ly123456/p/6163891.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值