Data Mining --- Backpropagation Neural Network

一、BP神经网络

BP神经网络模型如下,其目的是根据实际的输入与输出数据计算模型的权系数(误差反传),BP神经网络结构如下:

image

假设有p个训练样本,即有p个输入输出对。输入向量为:Ip(ip1,…ipn)',实际输出为:Tp=(tp1,…tpn)',理论输出为:Op=(Op1,…,Opn)'。目标是根据极小原则不断修改权系数使实际输出与理论输出之差最小化,即minΣ(tpi-Opi)2,算法伪代码如下(其中l为学习率):

image

BP建模步骤:

a.初始化权值w(赋一随机值rand(1))和阈值sita(偏差)

b.通过激发函数(如Sigmoid函数)正向传播输入

c.通过更新权值w和阈值sita反向传播误差

d.当误差小于阈值时结束训练

[例]BP网络如下(学习率0.9):

image

初始化权重w和阈值sita,并令输出等于输入:

image

输入正向传播:

image

误差反向传播:

image

更新权重和阈值(偏差):

image

BP神经网络总结:

对噪声容错强,很适合连续值的输入输出,缺点是训练时间长且确定参数需要经验知识。

 

二、Perceptron感知器(一个神经元:总刺激大于阈值(-u)输出1否则输出0)

image

转载于:https://www.cnblogs.com/jizhiyuan/p/3424590.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值