执行图像的批量判重工作时,您可以选用多种方法,具体取决于对"重复"的定义以及您关注的重复类型(是否允许缩放、旋转或轻微的变化)。
方式一:哈希比对
这种方法非常适合寻找几乎相同或者经过轻微缩放的重复图像。您可以使用像是平均哈希(aHash)、感知哈希(pHash)、差异哈希(dHash)等。
方法二:特征匹配
对于需要在图像中寻找相似部分或者某种程度的图像变化(如旋转、缩放)时,可以采用特征点提取和匹配方法,例如SIFT、SURF或ORB。然而,这种方法比哈希比对更加复杂和计算密集,但提供了更高级的图像匹配能力。
代码示例
import os
from PIL import Image
import imagehash
import cv2
class ImageProcess(object):
def __init__(self, img_path, _type=None):
"""
初始化函数
type,1: 平均哈希 aHash, 2: pHash 感知哈希 3:差异哈希 dHash
img_path: 图片目录
"""
self._type = _type
self.img_path = img_path
def find_duplicates(self):
"""
哈希对比-对比图片是否相同
"""
hashes, duplicates = {}, []
# 遍历图片目录
image_list = [os.path.join(self.img_path, file_name) for file_name in os.listdir(self.img_path) if
file_name.endswith((".png", ".gif", ".jpeg", ".bmp"))]
for _image in image_list:
img = Image.open(_image)
# 计算图像哈希值
hash_val = imagehash.average_hash(img) if self._type == 1 else imagehash.phash(
img) if self._type == 2 else imagehash.dhash(img)
if hash_val in hashes:
duplicates.append((_image, hashes[hash_val]))
else:
hashes[hash_val] = _image
return duplicates
@staticmethod
def match_images(img1, img2):
"""
匹配图片
"""
# 初始化orb检测器
orb = cv2.ORB_create()
# 提取关键点&描述器
kp1, de1 = orb.detectAndCompute(img1, None)
kp2, de2 = orb.detectAndCompute(img2, None)
# 使用BFMatcher进行匹配
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(de1, de2)
matches = sorted(matches, key=lambda x: x.distance)
# 依赖于定义的标准,这里只返回匹配特征点的数量
return len(matches)
def find_similar_images(self, some_threshold):
"""
特征匹配-对比图片是否相同
some_threshold: 相似度阈值
"""
duplicates = []
# 加载图片
image_list = [os.path.join(self.img_path, file_name) for file_name in os.listdir(self.img_path) if
file_name.endswith((".png", ".gif", ".jpeg", ".bmp"))]
images = [(_img, cv2.imread(_img, 0)) for _img in image_list] # 以灰度模式读取图片
# 图片两两对比
for i in range(len(images)):
for j in range(i + 1, len(images)):
img1_name, img1 = images[i]
img2_name, img2 = images[j]
matches = self.match_images(img1, img2)
# 假如匹配点超过阈值,则认为图片相似
if matches > some_threshold:
duplicates.append((img1_name, img2_name, matches))
return duplicates
if __name__ == '__main__':
img_type = 3
_path = "XXX"
img_obj = ImageProcess(_path)
print(img_obj.find_similar_images(400))
备注:
1: orb.detectAndCompute 是一种特征检测和描述符计算方法,通常用于图像处理和计算机视觉中。ORB(Oriented FAST and Rotated BRIEF)是一种结合了 FAST 特征检测器和 BRIEF 描述符的方法,它具有旋转不变性和尺度不变性。detectAndCompute 方法结合了特征检测和描述符计算两个步骤,可以在图像中检测出特征点并计算这些特征点的描述符。
具体来说,orb.detectAndCompute(image, mask) 的作用如下:
image 是输入的图像,用于进行特征检测和描述符计算。
mask 是可选参数,用于指定感兴趣区域(ROI),只在这个区域内进行特征检测和描述符计算。
在使用 orb.detectAndCompute 方法时,通常需要先创建一个 ORB 对象,然后调用 detectAndCompute 方法来检测特征点并计算描述符。这个方法常用于图像特征匹配、目标检测、图像拼接等应用中。
2: cv2.ORB_create() 是 OpenCV 中用于创建 ORB 特征检测器对象的函数。ORB(Oriented FAST and Rotated BRIEF)是一种结合了 FAST 特征检测器和 BRIEF 描述符的特征提取算法,具有旋转不变性和尺度不变性,适用于图像特征匹配、目标检测等任务。
import cv2
# 创建 ORB 特征检测器对象
orb = cv2.ORB_create()
# 读取输入图像
image = cv2.imread('image.jpg')
# 将图像转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 使用 ORB 对象检测特征点并计算描述符
keypoints, descriptors = orb.detectAndCompute(gray_image, None)
# 绘制特征点
image_with_keypoints = cv2.drawKeypoints(image, keypoints, None, color=(0, 255, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# 显示图像
cv2.imshow('Image with keypoints', image_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()
在上面的示例中,首先使用 cv2.ORB_create() 创建了一个 ORB 特征检测器对象,然后读取输入图像并将其转换为灰度图像。接着使用 ORB 对象的 detectAndCompute() 方法检测图像中的特征点并计算描述符,最后将特征点绘制在图像上并显示出来。