题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入输出格式
输入格式:
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式:
所得的方案数
输入输出样例
输入样例#1:
复制
3 2
输出样例#1:
复制
View Code
16
非常好的状压dp
注意预处理完就很好做
#include<bits/stdc++.h> using namespace std; //input by bxd #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define repp(i,a,b) for(int i=(a);i>=(b);--i) #define RI(n) scanf("%d",&(n)) #define RII(n,m) scanf("%d%d",&n,&m) #define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k) #define RS(s) scanf("%s",s); #define ll long long #define pb push_back #define REP(i,N) for(int i=0;i<(N);i++) #define CLR(A,v) memset(A,v,sizeof A) // #define inf 0x3f3f3f3f #define lson l,m,pos<<1 #define rson m+1,r,pos<<1|1 const int N=900; ll dp[10][50000][500]; int cnt,king[N],state[N]; int n,K; void init() { rep(i,0,(1<<n)-1) if( !(i&(i<<1)) ) { state[++cnt]=i; int temp=i; while(temp) { king[cnt]+=temp&1; temp>>=1; } } } int main() { RII(n,K); init(); rep(i,1,cnt) if(king[i]<=K) dp[1][i][king[i]]=1; rep(i,2,n) rep(j,1,cnt) rep(p,1,cnt) { if(state[j]&state[p])continue; if( (state[j]<<1)&state[p] )continue; if( state[j]&(state[p]<<1))continue; rep(s,king[j],K) dp[i][j][s]+=dp[i-1][p][s-king[j]]; } ll ans=0; rep(j,1,cnt) ans+=dp[n][j][K]; cout<<ans; return 0; }