Luogu 2801 教主的魔法 | 分块模板题

Luogu 2801 教主的魔法 | 分块模板题

我犯的错误:

  1. 有一处l打成了1,还看不出来……
  2. 缩小块大小De完bug后忘了把块大小改回去就提交……还以为自己一定能A了……
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
#define space putchar(' ')
#define enter putchar('\n')
template <class T>
void read(T &x){
    char c;
    bool op = 0;
    while(c = getchar(), c < '0' || c > '9')
    if(c == '-') op = 1;
    x = c - '0';
    while(c = getchar(), c >= '0' && c <= '9')
    x = x * 10 + c - '0';
    if(op) x = -x;
}
template <class T>
void write(T x){
    if(x < 0) x = -x, putchar('-');
    if(x >= 10) write(x / 10);
    putchar('0' + x % 10);
}

const int N = 1000005, B = 1000;
int n, m;
int a[N], s[N], lazy[N];
#define st(x) (((x) - 1) * B + 1)
#define ed(x) min((x) * B, n)
#define bel(x) (((x) - 1) / B + 1)
bool get_op(){
    char c;
    while(c = getchar(), c != 'A' && c != 'M');
    return c == 'M';
}
void pushdown(int b){
    if(!lazy[b]) return;
    for(int i = st(b); i <= ed(b); i++)
    s[i] += lazy[b], a[i] += lazy[b];
    lazy[b] = 0;
}
void single_change(int l, int r, int w){
    int b = bel(l);
    pushdown(b);
    for(int i = l; i <= r; i++) a[i] += w;
    for(int i = st(b); i <= ed(b); i++) s[i] = a[i];
    sort(s + st(b), s + ed(b) + 1);
}
void change(int l, int r, int w){
    if(bel(l) == bel(r))
    return single_change(l, r, w);
    for(int b = bel(l) + 1; b < bel(r); b++)
    lazy[b] += w;
    single_change(l, ed(bel(l)), w), single_change(st(bel(r)), r, w);
}
int block_query(int b, int w){
    return s + ed(b) - upper_bound(s + st(b), s + ed(b) + 1, w - lazy[b] - 1) + 1;
}
int single_query(int l, int r, int w){
    int b = bel(l), ret = 0;
    for(int i = l; i <= r; i++)
    if(a[i] + lazy[b] >= w) ret++;
    return ret;
}
int query(int l, int r, int w){
    if(bel(l) == bel(r))
    return single_query(l, r, w);
    int ret = 0;
    for(int i = bel(l) + 1; i < bel(r); i++)
    ret += block_query(i, w);
    return ret + single_query(l, ed(bel(l)), w) + single_query(st(bel(r)), r, w);
}
int main(){
    read(n), read(m);
    for(int i = 1; i <= n; i++) read(a[i]), s[i] = a[i];
    for(int i = 1; st(i) <= n; i++) sort(s + st(i), s + ed(i) + 1);
    while(m--){
    int op, l, r, w;
    op = get_op(), read(l), read(r), read(w);
    if(op) change(l, r, w);
    else write(query(l, r, w)), enter;
    }
    return 0;
}

转载于:https://www.cnblogs.com/RabbitHu/p/Luogu2801.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值