很明显,这个题目不能用简单的\(for\)循环+\(mod\)来完成,因为指数\(p\)已经达到了长整型,直接循环来完成的话肯定会超时的。
那么快速幂就应运而生了.
什么是快速幂呢?
利用二进制扩大底数,减少计算次数,经常会涉及到到类似\(a^b\mod p\)的运算,这里的\(b\)常常会很大,导致我们不能\(for\)循环计算。
那么怎么用代码实现呢?
首先,为了保险我们把所有的数据类型都设置为long long
。
然后为了方便,把快速幂写作一个函数,参数就是上面提到的\(a,b,p\),这是个好习惯
快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(logN),与朴素的O(N)相比效率有了极大的提高。
简单来说,就是个二分求模的过程。
至于二分过程,无非就是扩大底数减少指数,达到降低时间复杂度的效果。
但要注意的是,因为快速幂普遍会有一个取模操作,所以在过程中就要进行\(mod\)哦。
代码也很简单,就以自定义函数的方式贴下面吧...
long long qpow(long long a,long long b,long long p)
{
long long x=a;
long long ans=1;
while(b)
{
if(b%2!=0)
ans*=x;
ans%=p;
x*=x;
x%=p;
b/=2;
}
return ans;
}
ov.