自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(202)
  • 收藏
  • 关注

转载 springboot的类加载和传统的双亲委派有什么区别、如何按顺序实例化Bean

在SpringBoot中,类加载机制与Java的传统双亲委派类加载机制是有一定区别。主要体现在自定义类加载器与fat jar(可执行jar)的加载方式上。

2025-11-19 19:06:17 44

转载 .NET 搞 AI 不行?

如果说传统AI是"一问一答"的客服,那么智能体就是能自主完成任务的助手。传统AI智能体(Agent)用户:今天天气如何?AI:北京今天晴,20度用户:帮我安排明天的行程Agent:1. 查询天气→晴天2. 查看日历→10点有会3. 推荐活动→下午适合户外4. 生成行程→已发送到你邮箱被动响应主动规划+执行当别人问你"Python AI生态有多强"时,"你的Python AI应用,能承受生产环境的考验吗?.NET开发者从来不缺技术能力,✅ 强大的类型系统。

2025-11-19 19:02:13 95

转载 接口重试的7种常用方案!

记得五年前的一个深夜,某个电商平台的订单退款接口突发异常,因为银行系统网络抖动,退款请求连续失败。原本技术团队只是想“好心重试几次”,结果开发小哥写的重试代码竟疯狂调用了银行的退款接口82次!最终导致用户账户重复退款,平台损失过百万。老板在复盘会上质问:“接口重试这么基础的事,为什么还能捅出大篓子?大家哑口无言,因为所有人都以为只要加个for循环,再睡几秒就完事了……这篇文章跟大家一起聊聊重试的7种常用方案,希望对你会有所帮助。重试就像机房里的灭火器——永远不希望用到它,但必须保证关键时刻能救命。

2025-03-25 18:54:03 207

原创 keycloak的认证与校验

是否触发了keycloak的logout接口,如果触发了,那token将被删除,在线状态active为false,如果不希望提供client_secret参数,也可以通过。注意,刷新token与客户端有关,自己客户端生产的access_token,只能由自己客户端去refresh_token刷新。KC的登出是属于会话的登出,通过这个会话产生的所有token(一个会话可能对应多个不同client的token)都将会退出。carsi中出现的东西,院校希望直接通过固定的uri实现社区登录,故开发这个功能。

2025-02-18 10:30:28 1033 1

原创 猫狗识别(PyTorch)

数据结构为:big_data├── train│ └── XXX.jpg(每个文件夹含若干张图像)│ └── XXX.jpg(每个文件夹含若干张图像)├── val│ └── XXX.jpg(每个文件夹含若干张图像)└── ─── └── XXX.jpg(每个文件夹含若干张图像)需要对train数据集进行训练,达到给定val数据集中的一张猫 / 狗的图片,识别其是猫还是狗。

2024-12-11 08:34:33 2051 1

原创 时间序列分析

时间序列定义为在一定时间间隔内按时间顺序测量的某个数量。从最广泛的形式来说,时间序列分析是关于推断过去一系列数据点发生了什么,并试图预测未来会发生什么。

2024-12-09 08:53:57 1066

原创 MNIST和CNN卷积神经网络模型的手写数字识别(一篇代码的使用教程)

项目结构图项目目录说明data文件夹是保存MNIST官方数据集的文件夹,无需改动docs文件夹是保存我们的项目说明文档和相关图片,无需改动logs文件夹是保存我们已经训练过的不同模型的训练损失和验证损失可视化结果(基于Tensorboard),不需改动models文件夹是用来保存卷积神经网络模型代码,其中LeNet.py,ney.py,vgg16.py是老师提供的初始模型,其中vgg16.py中的vgg模型和LeNet.py中的Module模型已被我们调试好,可以运行;

2024-12-08 20:48:44 1365

原创 mtcnn+facenet+svm实现人脸识别系统

我们是站在巨人的肩膀上,完成自己的任务,mtcnn 和 facenet 使用别人已经预训练好的网络模型,我们只训练 svm。

2024-12-08 18:47:50 1359

转载 json反序列化问题踩坑

最近我在做知识星球中的商品秒杀系统,昨天遇到了一个诡异的json反序列化问题,感觉挺有意思的,现在拿出来跟大家一起分享一下,希望对你会有所帮助。这个问题最终发现还是转义的问题。那么,之前Test类中json字符串,也使用了转义,为什么没有问题?但在filter中的程序,在读取到这个json字符串之后,发现该字符串中包含了转义符号,程序自动把它变成了\\\。执行结果:抛出了跟文章最开始一样的异常。说明其实就是转义的问题。

2024-11-30 09:57:58 1166

原创 Spring官方不推荐使用 @Autowired?

很多人刚接触 Spring 的时候,对@Autowired绝对是爱得深沉。一个注解,轻松搞定依赖注入,连代码量都省了。谁不爱呢?但慢慢地,尤其是跑到稍微复杂点的项目里,@Autowired就开始给你整点幺蛾子。不建议无脑用@Autowired,而是更推荐构造函数注入。为什么?是@Autowired不行吗?并不是。它不是无敌的,滥用起来容易埋坑。下面就来聊聊为啥官方建议你慎用@Autowired,顺便再带点代码例子,希望对你会有所帮助。隐式依赖让代码可读性差。强耦合违背面向接口编程。

2024-11-30 09:41:07 544

原创 CNN和MobileNetV2搭建的水果识别模型

在本项目中着重探索了利用深度学习模型进行水果图像分类的方法。具体而言包括使用卷积神经网络(CNN)模型进行水果图片的分类和探索轻量级神经网络模型MobileNetV2在水果图像分类中的应用。在第一项任务中,使用TensorFlow构建了一个简单的CNN模型,并通过调整模型参数来提高准确率。在实验过程中发现由于数据集的问题,训练结果并不理想,测试集上的准确率低于预期,同时出现了过拟合的情况。针对这个问题,从优化器、学习率和训练轮次等方面入手,对模型进行了改进和调整。

2024-11-09 09:30:49 1253

原创 对Spring-AI系列源码的讲解

今天,我们将开启对Spring-AI系列源码的讲解。请大家不急不躁,我会逐步深入,每次专注于一个知识点,以防让人感到困惑。首先,源码的讨论自然离不开自动装配。有人可能会问,之前已经讲解过这个内容了,为什么还要再谈一次?这是因为自Spring Boot 3.3.x版本以来,自动装配的机制发生了一些变化。尽管如此,凭借我们已具备的源码阅读能力,今天我们将简单回顾一下新版Spring如何处理自动装配的问题。毕竟,随着版本的不断升级,我们必须适应新的机制,避免仍用旧有的思维去解读源码。

2024-09-22 19:43:10 1172 1

原创 第37条中建议 用EnumMap替换序数索引,为什么?

在中的第 36条中建议 用 EnumSet 替代位字段,在第37条中建议 用EnumMap替换序数索引,为什么?

2024-09-18 15:26:57 1153

原创 java的分布式事务解决方案

答:既然是分布式,首先必然是分布式系统中的一个概念啦。单体应用没这个东西,也不需要这个东西。本地事务就够啦,Spring给我们提供的注解@Transactional, InnoDB引擎会为我们保证事务的ACID特性。但是分布式系统中,目前大多数互联网公司都在用分布式系统,微服务架构等。所以,学好分布式事务太有必要。废话不多说,直接上原理。总结来说,分布式事务涉及了多个独立的数据源(数据库)或者参与者的事务操作,这些数据源分布在不同的计算机或网络中;

2024-09-12 12:50:56 1546

原创 为什么不推荐使用Stack

Java里有一个叫做Stack的类,却没有叫做Queue的类(它是个接口名字)。当需要使用栈时,Java已不推荐使用Stack,而是推荐使用更高效的ArrayDeque;既然Queue只是一个接口,当需要使用队列时也就首选ArrayDeque了(次选是LinkedList)。

2024-09-12 12:47:47 1016

原创 Python数据结构集合的相关介绍

集合是一种无序、可变的数据结构,它也是一种变量类型,集合用于存储唯一的元素。集合中的元素不能重复,并且没有固定的顺序。在Python 提供了内置的set类型来表示集合,所以关键字set就是集合的意思。你可以使用大括号{}或者set()函数来创建一个集合。需要注意的是,集合是无序的,没有固定的顺序。因此,集合元素的顺序可能与你创建或添加的顺序不同。for。

2024-09-10 19:27:13 1226

原创 Python如何向列表或数组添加元素

编程中的数组是一个有序的项目集合,所有的项目都需要是相同的数据类型。然而,与其它编程语言不同,数组在 Python 中不是一个内置的数据结构。Python 使用列表取代传统的数组。列表本质上是动态数组,是 Python 中最常见的和最强大的数据结构之一。你可以把它们想象成有序的容器。它们将同类相关的数据存储和组织在一起。存储在一个列表中的元素可以是任何数据类型。可以有整数列表、浮点数列表、字符串列表,以及任何其它内置 Python 数据类型的列表。

2024-09-10 19:25:05 983

原创 HashMap扩容机制的个人理解及它的底层实现

Key的存储方式是基于哈希表的,HashMap是 Map 接口 使用频率最高的实现类。允许使用null键和null值,与HashSet一样,不保证映射的顺序。所有的key构成的集合是无序的、唯一不可重复的。所以,key所在的类要重写:equals()和hashCode()所有的value构成的集合是Collection:无序的、可以重复的。所以,value所在的类要重写:equals()

2024-09-09 17:43:27 1247

原创 Java的SPI机制

SPI(Service Provider Interface),是JDK内置的一种 服务提供发现机制,可以用来启用框架扩展和替换组件,主要是被框架的开发人员使用,例如数据库中的java.sql.Driver接口,不同的厂商可以针对同一接口做出不同的实现,如下图所示,MySQL和PostgreSQL都有不同的实现提供给用户。而Java的SPI机制可以为某个接口寻找服务实现,Java中SPI机制主要思想是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要,其核心思想就是解耦。

2024-09-09 17:36:59 1187

原创 Python异步编程高并发执行和解析响应

本例中,异步耗时的总时长与访问google.com超时时长相同,那么意味着,如果协程中如果有1个是耗时很长的任务,那么主线程还将被阻塞,异步解决不了这个问题,这时耗时协程应该拿出来,用子线程、或者子进程来执行。通常的编程,如果有4个任务,采用同步编程模式,4个任务是按顺序执行的,分别用时:10s,7s,5s,6s,共耗时28s;现在,采用Asyncio异步编程,以并发的运行方式,向多个网站同时发送request, 总耗时,应该是用时最长那个协程的用时。,相比同步编程方式,耗时减少了1半。

2024-09-08 19:19:50 1476

原创 Python向列表或数组添加元素的讲解

编程中的数组是一个有序的项目集合,所有的项目都需要是相同的数据类型。然而,与其它编程语言不同,数组在 Python 中不是一个内置的数据结构。Python 使用列表取代传统的数组。列表本质上是动态数组,是 Python 中最常见的和最强大的数据结构之一。你可以把它们想象成有序的容器。它们将同类相关的数据存储和组织在一起。存储在一个列表中的元素可以是任何数据类型。可以有整数列表、浮点数列表、字符串列表,以及任何其它内置 Python 数据类型的列表。

2024-09-08 19:14:28 808

原创 分布式事务解决方案

答:既然是分布式,首先必然是分布式系统中的一个概念啦。单体应用没这个东西,也不需要这个东西。本地事务就够啦,Spring给我们提供的注解@Transactional, InnoDB引擎会为我们保证事务的ACID特性。但是分布式系统中,目前大多数互联网公司都在用分布式系统,微服务架构等。所以,学好分布式事务太有必要。废话不多说,直接上原理。总结来说,分布式事务涉及了多个独立的数据源(数据库)或者参与者的事务操作,这些数据源分布在不同的计算机或网络中;

2024-09-07 11:34:46 1124

原创 SpringBoot项目-实现简单的CRUD功能和分页查询

是方便初学者学习后端项目的一个比较清晰明了的实践代码,读者可根据博文,从自己动手创建一个新的SpringBoot项目,到使用PostMan测试基本请求,完完全全实践一遍,写出自己的代码,或者实现自己想要的功能。url 指的是数据库连接的 URL,它用于指定要连接的数据库的位置和其他连接参数,localhost指的是本地的主机名,3306是mysql的默认端口号。@Entity注解的作用如下。也就是说,实体类和数据库表的映射关系由该注解的实现,其中的映射关系具体体现在:实体类的属性和数据库表的字段一一对应。

2024-09-07 11:29:54 1757

原创 Spring的学习感悟

Spring 是一个企业级 J2EE 应用开发一站式解决方案,其提供的功能贯穿了项目开发的表现层、业务层和持久化层,同时,Spring 可以和其他应用框架无缝整合轻量:Spring 是一个轻量级的框架,其核心 JAR 包的大小均为 1MB 左右。从系统的资源使用上来说,Spring 也是一个轻量级的框架,在其运行期间只需少量的操作系统资源便能稳定运行控制反转:Spring 的控制反转指一个对象依赖的其他对象将会在容器的初始化完成后主动将其依赖的对象传递给它,而不需要这个对象自己创建或者查找其依赖的对象。

2024-09-05 17:08:55 858

原创 SpringCloud Hystrix的解析

Hystrix 为 微服务架构提供了一整套服务隔离、服务熔断和服务降级的解决方案。它是熔断器的一种实现,主要用于解决微服务架构的高可用及服务雪崩等问题服务熔断:Hystrix 熔断器就像家中的安全阀一样,一旦某个服务不可用,熔断器就会直接切断该链路上的请求,避免大量的无效请求影响系统稳定,并且熔断器有自我检测和恢复的功能,在服务状态恢复正常后会自动关闭。

2024-09-05 17:07:18 1665

原创 在Winform分页控件中集成导出PDF文档的功能

当前的Winform分页控件中,当前导出的数据一般使用Excel来处理,Excel的文档可以用于后期的数据展示或者批量导入做准备,因此是比较好的输入输出格式。但是有框架的使用客户希望分页控件能够直接导出PDF,虽然Excel也可以直接转换为PDF,不过直接导出PDF的处理肯定更加方便直观。因此整理了一下分页控件导出PDF的处理过程,分享一下。

2024-09-04 20:19:03 1603

原创 PyJWT 和 python-jose的具体使用

功能范围PyJWT专注于 JWT,适合需要简单 JWT 处理的项目;则支持整个 JOSE 标准,适合需要更复杂加密和签名操作的项目。易用性PyJWTAPI 简单,易于上手;更强大,但同时也更复杂。算法支持支持的算法更广泛,尤其是在需要高级加密或签名场景时更具优势。使用场景: 如果你的项目只需要生成和验证 JWT,PyJWT是一个不错的选择;如果你需要全面的 JOSE 支持,包括 JWS、JWE 等,或者需要复杂的加密和签名,是更好的选择。

2024-09-04 20:10:37 1899

原创 接口防盗刷的防范措施

大家在工作中肯定遇到过接口被人狂刷的经历,就算没有经历过,在接口开发的过程中,我们也需要对那些容易被刷的接口或者和会消耗公司金钱相关的接口增加防盗刷功能。例如,发送短信接口以及发送邮件等接口,我看了国内很多产品的短信登录接口,基本上都是做了防盗刷,如果不做的话,一夜之间,也许公司都赔完了┭┮﹏┭┮。假设我们正在开发一个发送短信(仅国内)的接口,过程如下/sendSmsphone上面便是一个最简单的向手机号发送短信验证码的接口,不考虑其他和业务相关的操作。我们现在来分析一下,该接口存在的问题(刷接口)。

2024-09-03 21:34:21 1382

原创 MongoDB的使用技巧解析

不知道大家在工作项目中有没有使用MongoDB,在哪些场景中使用。MongoDB作为NoSQL数据库,不像SQL数据库那样,可以使用Mybatis框架。如果需要在SpringBoot中使用MongoDB的话,我目前知道有三种方式,第一种是直接使用MongoDB官方的SDK,第二种是使用SpringJpa的方式,第三种是使用MongoTemplate。

2024-09-03 21:27:21 1711

原创 Java中的String能存储多少字符?不可变吗?

因此,主要的还是看编译器对常量池的限制,使得byte数组的最大长度不能超过65535;以及JVM的内存限制补充:JDK9以后对String的存储进行了优化。底层不再使用char数组存储字符串,而是使用byte数组。对于LATIN1字符的字符串可以节省一倍的内存空间。Java中的String是不可变对象在面向对象及函数编程语言中,不可变对象(英语:Immutable object)是一种对象,在被创造之后,它的状态就不可以被改变。

2024-09-02 06:30:00 938

原创 float 或 double 运算的时候会有精度丢失的风险?

BigDecimal可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过BigDecimal来做的。想要解决浮点数运算精度丢失这个问题,可以直接使用BigDecimal来定义浮点数的值,然后再进行浮点数的运算操作即可。// 0浮点数没有办法用二进制精确表示,因此存在精度丢失的风险。不过,Java 提供了BigDecimal来操作浮点数。BigDecimal的实现利用到了BigInteger(用来操作大整数), 所不同的是。

2024-09-01 09:01:03 1080

原创 ArrayList的详细使用教程

/集合默认容量10;//空数组//默认容量的空的数组// 集合中真实存储数据的数组//集合中元素的个数,注意,这里不是数组的长度。

2024-09-01 08:54:02 1150

原创 Amqp协议的说明和使用场景

Amqp1.0 的协议帧由FrameHeader、ExtendedHeader、FrameBody组成。FrameHeader 8个字节大小,包含长度、类型信息等Extended header 可变宽度区域FrameBody 是一个可变宽度的字节序列,其格式取决于帧类型Size: FrameHeader的第0~3个字节包含帧大小。无符号的32位整数,为FrameHeader、ExtendedHeader、FrameBody的总和大小。如果大小小于8字节,则格式错误。

2024-08-06 17:45:46 1144

原创 Pytorch人体姿态骨架生成图像

ControlNet是一个稳定扩散模型,可以复制构图和人体姿势。ControlNet解决了生成想要的确切姿势困难的问题。Human Pose使用OpenPose检测关键点,如头部、肩膀、手的位置等。它适用于复制人类姿势,但不适用于其他细节,如服装、发型和背景。输入一个图像,并提示模型生成一个图像。Openpose将为你检测姿势。🔹 本案例需使用Pytorch-1.8 GPU-P100及以上规格运行。

2024-08-06 17:38:45 1694

原创 java的命令执行漏洞揭秘

注意:java的Runtime.getRuntime.exec和ProcessBuilder.start,都是直接启动传入参数对应的进程,如果只是命令执行的部分参数可控,想在java中通过;、|、&等实现命令注入是行不通的, 例如这样传入命令是无法执行的。

2024-08-01 21:15:30 716 1

原创 依赖注入模式的实际应用解说

图24 替换RendererFactory2渲染器等内容, 让Angular运行在终端terminal上作者通过替换RendererFactory2等渲染器,让Angular应用可以跑在终端terminal上。这就是Angular设计的灵活度,连platform都可以替换掉的强大的灵活。详细的替换细节可以查看原文章,这里就不展开了。知识点小结:依赖注入的强大之处,在于提供商可以自行配置,最后实现替换逻辑。

2024-07-30 09:17:50 1068

原创 高手需要掌握哪些好习惯?

考虑使用静态工厂方法代替构造器,静态工厂方法能够见名知意、可以使用单例或享元模式返回对象、搭配泛型返回对象可以是原类型子类、返回的对象可以随着入参改变、返回的对象所在的类可以在编译期不存在在参数较多时可以考虑使用建造者模式,可以代码可读性更高、防止构造对象期间发生逃逸可以通过私有构造强化单例,但能够被反射、序列号破坏单例;使用枚举单元素强化单例则可以避免破坏(在反射实例化前判断为枚举则抛出异常)对象依赖的“工具”不是固定的时,可以采用依赖注入DI的方式进行改变,而不是直接写死;

2024-07-28 14:32:22 970

原创 Linux中的Reactor模型与百万级并发实践

什么是并发:网络并发,通俗的讲就是服务器可以承载的客户端数量,即服务器可以稳定保证客户端同时接入的数量。Reactor模型开发效率比直接使用IO多路复用要高,它一般是单线程的,设计目标是希望一个线程使用CPU的全部资源;带来的优点是,在每个事件处理中很多时候不需要考虑共享资源的互斥访问。Reactor模式是处理并发IO比较常见的模式,用于同步IO,核心思想是将所有要处理的IO事件注册到一个中心IO多路复用器上,同时主线程或进程阻塞在IO多路复用器上;

2024-07-26 21:25:04 794

原创 Reactor模型与高效http静态服务器构建

Reactor意译“反应堆”,是一种事件驱动机制,程序需要提供回调函数,注册到reactor中。Reactor模型包含三个重要组件:多路复用器,事件分离器,事件处理器。多路复用器在Linux上一般是select、poll、epoll;事件分离器是调用对应注册的回调函数;事件处理器是回调函数的执行,如读、写数据操作。一个程序监控多个IO,所有要处理的事件注册到一个中心IO多路复用器epoll上,由epoll进行管理,当epoll检测到一个IO事件到来或准备就绪时,epoll触发相对应的IO事件;

2024-07-26 21:20:46 695

原创 caffeine的知识总结

要使用权重来衡量的话,就要规定权重是什么,每个元素的权重怎么计算,weigher 方法就是设置权重规则的,它的参数是一个函数,函数的参数是 key 和 value,函数的返回值就是元素的权重,比如上述代码中,caffeine 设置了最大权重值为 100,然后将每个 Student对象的 socre成绩作为权重值,所以整个意思就是:缓存中存储的是 Student对象,但是限制所有对象的 score总和不能超过 100,否则就触发异步清除缓存。进行开启,默认是使用Caffeine自带的,也可以自己进行实现。

2024-07-25 20:54:42 1396

基于鸿蒙系统开发记事本设计与实现源码毕设项目

基于鸿蒙系统开发记事本设计与实现源码毕设项目,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码毕设项目基于鸿蒙系统开发记事本设计与实现源码

2026-01-12

基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip

基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Extraction的中文关系抽取项目源码+说明.zip基于BERT-Relation-Ex

2026-01-12

基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明

基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM-CRF模型的中文实体识别源码+数据集+说明基于BERT-BiLSTM

2026-01-12

基于pytorch实现的bert-bilstm-crf-ner命名实体识别源码+数据集+项目说明.zip

基于pytorch实现的bert-bilstm-crf-ner命名实体识别源码+数据集+项目说明.zip, 本项目是一个基于PyTorch框架实现的BERT-BiLSTM-CRF模型用于NER任务的完整项目。它不仅提供了训练和推理的源码,还包括了一个专门用于训练的NER数据集以及详细的项目说明文档,为使用者提供了从零开始构建和训练命名实体识别系统的完整流程。通过对BERT模型进行微调,BiLSTM层对特征进行深入挖掘,并使用CRF层进行序列标注,该模型在NER任务中能够达到较高的准确率和优秀的性能。 在这个项目中,开发者不仅关注模型性能,还重视代码的质量和项目的可复现性。源码部分经过精心编写,结构清晰,注释详尽,使得即使是初学者也能够理解每个部分的功能和实现逻辑。数据集方面,精心挑选或制作,经过清洗和格式化,确保数据的质量和一致性,以便于在训练模型时能够取得良好的效果。项目说明文档详细记录了如何配置运行环境、如何进行数据预处理、模型训练、参数调优、评估模型性能以及推理部署等关键步骤,指导用户能够顺利地复现和应用本项目。 BERT-BiLSTM-CRF模型的成功应用,不仅展示了深度学习在复杂自然语言处理任务中的潜力,也为学术界和工业界提供了一个强有力的工具。该模型的实现可以应用于多种不同的语言和领域,具有很好的普适性和推广性。随着技术的不断进步和模型的不断优化,未来在命名实体识别和其他NLP任务中,BERT-BiLSTM-CRF模型的应用前景将更加广阔。基于pytorch实现的bert-bilstm-crf-ner命名实体识别源码+数据集+项目说明.zip基于pytorch实现的bert-bilstm-crf-ner命名实体识别源码+数据集+项目说明.zip基于pytorch实现的bert-bilstm-crf-ner命名实体识别源码+数据集+项目说明.zip基于pyto

2026-01-12

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手

2026-01-12

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明步骤

在中国,交通警察的手势是指挥交通的重要手段,理解并正确响应这些手势对于道路安全至关重要。近年来,随着深度学习技术的迅猛发展,利用机器学习算法实现交通手势的自动化识别已经成为了可能。本项目致力于开发一个基于Pytorch框架的深度学习系统,该系统能够识别并准确解释8种中国交通警察的指挥手势。 Pytorch是一个开源的机器学习库,它基于Python语言,由Facebook的人工智能研究团队开发。Pytorch广泛应用于计算机视觉和自然语言处理领域,其动态计算图的特性使得它在构建复杂的神经网络模型时具有高度的灵活性。由于其简单易用的API和良好的社区支持,Pytorch成为了研究者和开发者的首选深度学习框架之一。 该项目的实现包含以下几个关键部分: 1. 数据集:项目中使用的关键数据集包含了成千上万张不同交通警察手势的图片。这些图片经过了预处理和标注,可以用于训练和验证深度学习模型。数据集的收集和标注过程至关重要,因为它们直接决定了模型识别的准确性和泛化能力。 2. 模型:为了实现手势的识别,项目中会构建并训练一个卷积神经网络(CNN)。CNN是一种深度学习模型,特别适合处理图像数据。模型的结构可能包含多个卷积层、池化层、激活函数和全连接层,每一层都设计来提取图片中的不同特征。 3. 代码实现:代码部分将包含模型的定义、训练循环、评估过程以及接口函数。开发人员将使用Pytorch框架提供的接口和工具来编写代码,实现模型的构建、数据的加载、模型的训练和测试等步骤。代码部分还需要能够接收实时视频流或图片文件作为输入,并输出识别到的手势类型。 4. 项目说明步骤:为了使其他研究者或开发者能够理解并复现本项目的成果,项目中还会提供详细的操作指南和解释。这些文档会详细记录数据预处理、模型训练、参数调整、测试和评估的每个步骤,以及如何部署模型到不同的应用场景中。 5. 性能优

2026-01-12

基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档

基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档基于MLP和NASA数据集实现锂电池寿命预测

2026-01-12

基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+使用说明文档

近几年,随着智能手机和电动汽车的广泛应用,锂电池的话题越来越多,研究也越来越丰富,总之一句话:新能源很热。于是,趁最近一个空段,我也加入了新能源的研究大军。 花了几个月时间,看了百来篇与锂电池相关的论文。大部分有关锂电池寿命预测的论文用到两个数据集:NASA 和 CALCE。NASA 是美国宇航局 NASA 埃姆斯研究中心提供的锂电池老化实验数据,CALCE 是马里兰大学高级生命周期工程中心的电池循环测试数据集。今天我分析 NASA 这个数据集,CALCE 数据集下次另开博文来分析。 NASA 这个数据集比较老了,2007年发布,数据格式是 mat。而现在大部分人都用 Python 来做实验,mat 文件没办法直接使用,使用的话需要先读取和解析。既然要写论文,那就自己动手写个程序从这个数据集中来提取必要的内容吧。

2026-01-12

基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明

基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明基于p

2026-01-12

基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明

Transformer模型是自然语言处理领域中的一个关键模型,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。这个模型以其创新的自注意力机制和无循环结构,彻底改变了序列建模的方式。PyTorch是一个流行的深度学习框架,它提供了灵活的接口来构建和训练神经网络,包括Transformer模型。以下是对基于PyTorch实现Transformer模型的最简洁方式源码的详细解析。 Transformer模型主要由以下几个部分组成: 1. **嵌入层(Embedding Layer)**:将输入的单词转换为向量表示,通常包括词嵌入(Word Embeddings)和位置编码(Positional Encoding)。词嵌入将词汇表中的每个单词映射到一个固定大小的向量,而位置编码则为序列中的每个位置赋予独特的信息,因为Transformer不依赖于顺序信息。 2. **多头自注意力(Multi-Head Self-Attention)**:这是Transformer的核心组件,它允许模型同时考虑输入序列的所有位置。每个头部独立执行自注意力,然后将结果合并。 3. **前馈神经网络(Feed-Forward Network, FFN)**:这是一个简单的全连接网络,通常由两个线性层和ReLU激活函数组成,用于对自注意力层的输出进行非线性变换。 4. **残差连接(Residual Connections)** 和 **层归一化(Layer Normalization)**:这两种技术被用于加速模型的收敛和提升模型的性能。 5. **编码器(Encoder)**:由多个相同的Transformer块堆叠而成,每个块包含一个多头自注意力层和一个FFN,中间插入层归一化和残差连接。 6. **解码器(Decoder)**:同样

2026-01-12

pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明

pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明,pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下: image 第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下: image 第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: image 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: image 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm

2026-01-12

pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明

pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明,pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下:第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下:第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项目说明pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集+项

2026-01-12

python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档

python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档 该资源内项目源码是个人的课程设计作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到94.5分,放心下载使用! 骨骼动作识别技术是计算机视觉领域的一个重要分支,它通过分析视频中的动作行为,实现对人类动作的智能识别。这项技术在健康监测、人机交互、视频监控和智能游戏等多个领域有着广泛的应用。随着深度学习技术的发展,时空图卷积网络(Spatio-Temporal Graph Convolutional Networks,简称ST-GCN)在骨骼动作识别领域表现出了巨大的潜力。ST-GCN通过构建时空图模型来捕捉人体动作的时序和空间信息,能够有效提取动作特征,实现对复杂动作的准确识别。 ST-GCN是一种深度学习模型,它利用图卷积网络(GCN)的特性,将人体骨骼作为一个图结构,图中的节点代表不同的骨骼点,边则代表骨骼点之间的连接关系。在时空图中,节点的特征不仅包含空间信息,还包含了时间维度上的信息,这种结构使得模型能够同时捕捉动作的静态形态和动态变化。 在骨骼动作识别中使用ST-GCN模型,可以有效解决传统机器学习方法在特征提取和表达上的局限性。传统的骨骼动作识别方法通常需要人工设计特征,这种方法不仅耗时而且依赖专家知识。相比之下,ST-GCN能够通过端到端的训练方式自动学习到空间和时间维度的特征表示,提高了识别的准确性和效率。 本资源是一套完整的python毕业设计项目,涵盖了源代码、训练好的模型和项目文档。该项目是基于ST-GCN进行骨骼动作识别的研究,作者通过该课程设计作业,实现了一个能够准确识别不同骨骼动作的智能系统。项目源码经过测试,运行无误,作者在答辩评审中获得了94.5分的高分,显示了该毕业设计项目的高质量和实用性。项目文档详细记录了设计思路、实验过程以及结果分

2026-01-12

基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)

基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Transformer模型构建的聊天机器人python源码+文档说明(高分项目)基于Tran

2026-01-12

python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档

python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源代码+模型+项目文档python毕业设计基于时空图卷积(ST-GCN)的骨骼动作识别源

2026-01-12

基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明

基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作识别python源码+项目说明基于时空图卷积ST-GCN的骨骼动作

2026-01-12

基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明

基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+mysql人事工资管理系统源码+数据库文件+运行说明基于C#的winform+my

2026-01-12

课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)

课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为课程设计、期末大作业,代码资料完整,下载可用。 课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Python+tkinter+SQLServer实现的图书管理系统的设计与实现(高分项目)课程设计 基于Pytho

2026-01-12

基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型

基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项目源码-模型基于深度学习openpose实现人体姿态检测识别及动作分类项

2026-01-12

Python超级玛丽完整版源代码+文档说明(期末大作业)

Python超级玛丽完整版源代码+文档说明(期末大作业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Python超级玛丽完整版源代码+文档说明(期末大作业)Pytho

2026-01-11

基于紫光FPGA的RISC V多用途游戏机项目源码+文档说明(获奖项目)

基于紫光FPGA的RISC V多用途游戏机项目源码+文档说明(获奖项目),项目工程资源经过严格测试,功能正常,可直接运行并成功复现,拿到资料包后可轻松复现相同项目。资源包含完整源码、工程文件及说明(如有)。答辩评审平均分达96分,质量优质,放心下载使用。项目代码均经过测试运行成功,功能正常才上传。如有使用问题,可随时联系,会及时解答并提供帮助。若需要相关开发工具或学习资料,也可提供支持。该项目可应用于项目设计、毕业设计、课程设计、作业、工程实训、学科竞赛、初期项目立项、学习练手等场景,可借鉴复刻,也可在此基础上扩展开发。下载后请先打开README文件(如有),项目工程可直接复现,基础较好的可在此基础上修改实现其他功能。供开源学习、技术交流及参考,勿用于商业用途。

2026-01-15

基于昇思MindSpore AI框架的肾脏肿瘤分割竞赛python源码(获奖项目)

基于昇思MindSpore AI框架的肾脏肿瘤分割竞赛python源码(获奖项目),本项目是针对肾脏肿瘤分割竞赛的一个高分获奖解决方案,它基于昇思MindSpore AI框架实现,使用Python编程语言编写。MindSpore是华为推出的一款深度学习框架,旨在提供高效、灵活、便捷的AI模型训练和推理能力。在这个项目中,开发者通过MindSpore构建了一个能够准确分割肾脏和肿瘤的模型,对于医学图像分析具有重要意义。 我们要理解肾脏肿瘤分割的重要性。在医疗领域,精确地分割出肾脏和肿瘤区域可以帮助医生更准确地诊断病情,制定治疗方案,甚至预测疾病的预后。因此,这种技术对于提升医疗服务质量具有显著价值。 项目采用Python作为主要开发语言,Python是目前数据科学和机器学习领域广泛使用的编程语言,拥有丰富的库和工具支持。在这个项目中,Python不仅用于编写模型的逻辑,还可能涉及数据预处理、模型训练、结果评估等多个环节。 昇思MindSpore框架提供了自动化的并行计算和分布式训练能力,使得大规模数据的处理成为可能。其核心特性包括动态图模式和静态图模式,动态图便于调试和实验,静态图则优化了运行效率。此外,MindSpore支持GPU、CPU和Ascend等多种硬件平台,使得模型可以在不同硬件环境下运行。 项目中的"code"文件夹可能包含以下内容: 1. 数据预处理脚本:这部分代码会处理原始图像数据,如归一化、裁剪、增强等,以便输入到模型中。 2. 模型定义:定义基于MindSpore的卷积神经网络(CNN)或其他深度学习模型,用于分割任务。 3. 训练脚本:设置训练参数,如学习率、批次大小、迭代次数等,并进行模型训练。 4. 评估脚本:评估模型的性能,可能包括Dice系数、IoU(Intersection over Union)等指标。 5. 可视化和结果分析:将分

2026-01-14

基于深度学习方法实现小样本条件下的高光谱图像分类python源码+文档说明

随着人工智能和机器学习技术的飞速发展,深度学习已经成为解决各种计算机视觉问题的利器。尤其是在处理高光谱图像时,深度学习方法展现出了强大的性能。高光谱图像是一种包含丰富光谱信息的数据形式,广泛应用于遥感探测、环境监测、生物医学成像等领域。然而,高光谱图像分类面临着一个挑战,那就是通常可用的训练样本数量较少,这限制了传统机器学习算法的效果。 本项目提出的解决方案是利用深度学习方法,在小样本条件下进行高光谱图像的分类。这种方法主要依赖于深度神经网络的强大特征提取能力,能够在有限的样本量下捕捉到数据的关键特征,并通过训练网络模型来实现精准分类。为了达到这一目标,项目中可能涉及的技术包括但不限于卷积神经网络(CNN)、迁移学习、数据增强等策略。通过这些技术,可以在样本不足的情况下,尽可能地提升模型的泛化能力。 源码中将包含以下几个关键部分:数据预处理模块、网络模型构建模块、训练与验证模块以及结果评估模块。数据预处理模块负责对原始高光谱图像数据进行归一化、分片等处理,以便于神经网络的输入。网络模型构建模块则根据高光谱图像的特点设计和实现合适的深度神经网络结构。训练与验证模块用于加载预处理后的数据,进行网络训练和验证,确保模型在验证集上有良好的分类效果。结果评估模块通过各种评估指标,如准确率、召回率、F1分数等来评价最终模型的性能。 此外,项目说明文档将详细介绍代码的使用方法、网络模型的选择依据、数据集的构建过程以及实验结果的分析。这不仅有助于其他研究者理解本项目的工作,也方便他们复现和扩展本项目的研究成果。 需要注意的是,尽管深度学习在小样本学习领域表现出了巨大的潜力,但仍存在一些问题和挑战。例如,如何设计更加高效和鲁棒的网络模型以应对高光谱图像的复杂性和多维性,以及如何在保证模型性能的同时减少对计算资源的需求等。这些问题的解决将极大地推动高光谱图像分类技术的发展,并扩展其应用

2026-01-14

基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法

基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据) ,已实现NN(MLP)、CNN、LSTM方法基于电影评论数据的中文情感分析(含训练数据、验证数据)

2026-01-14

基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集

基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析NN(MLP)、CNN与LSTM方法实现+数据集基于电影评论数据的中文情感分析

2026-01-14

Python岩石裂缝与CT岩心裂缝语义分割源码及数据集(高分项目)

Python岩石裂缝与CT岩心裂缝语义分割源码及数据集(高分项目),在本资源中,我们主要探讨的是使用Python进行岩石裂缝与CT岩心裂缝的语义分割。语义分割是一种计算机视觉技术,它旨在将图像中的每个像素分配到预定义的类别中,以理解图像内容的细节。在这个项目中,Python被用作主要编程语言,它以其丰富的库和易读性成为数据科学和图像处理领域的首选工具。 我们要了解Python在图像处理领域的常用库。`PIL`(Python Imaging Library)和它的后继者`Pillow`用于基本的图像操作,如打开、显示和保存图像。`OpenCV`是另一个强大的库,提供了更多的高级功能,如滤波、边缘检测和特征提取。然而,对于深度学习任务,如语义分割,我们通常会使用`TensorFlow`或`PyTorch`这样的深度学习框架。在这个项目中,可能是使用`Keras`,它是`TensorFlow`的一个高级API,简化了模型构建过程。 CT(Computed Tomography)岩心扫描是一种无损检测技术,用于获取岩石内部结构的详细信息。通过分析CT图像,可以识别和量化裂缝,这对于地质学、石油工程和材料科学等领域至关重要。裂缝的识别可以帮助研究人员更好地理解储层特性,如渗透率和储油能力。 语义分割通常涉及到卷积神经网络(CNNs),如U-Net,它是一种为图像分割设计的架构。U-Net的特点是其对称的编码器-解码器结构,编码器部分用于捕获图像的全局上下文,解码器部分则用于恢复精细的像素级预测。在训练过程中,我们需要一个带有标注的图像数据集,即每张图像都有一张对应的标注图,指示出每个像素所属的类别(在这个例子中,可能就是岩石和裂缝两类)。 在这个项目中,"data集"很可能包含了CT扫描的图像以及它们的对应标注。这些图像通常以`.jpg`或`.png`格式存储,而标注可能以`

2026-01-14

基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)

基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集(高分项目)基于Python的CT岩心与岩石裂缝语义分割系统源码及数据集

2026-01-14

基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释

基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说明+详细注释基于python遗传算法解决混合流水车间调度问题源码+项目说

2026-01-14

2023年全国大学生数学建模竞赛c题含论文,代码(获得二等奖)

2023年全国大学生数学建模竞赛c题含论文,代码(获得二等奖),代码文件夹-该文件夹用于存储项目中用到的所有代码文件,代码均为python编写,除了第三题的BONMIN 求解器,其他代码使用的均为常用的python库,理论上有panda,numpy,matplotlib三个库加上pylab库用来显示中文,即可复现代码。在同文件夹内放入输入的数据文件后,可以直接运行。数据文件夹该文件夹用于存储数据处理后的所有 Excel 文件,部分代码需要excel文件运行,要复现代码,请把对应excel文件放在代码同文件夹下,或修改代码的相对路径为你存放的对应路径。 +--readme.md +--代码 | +--ARIMA.ipynb | +--单品合并.ipynb | +--回归方程展示图.ipynb | +--按月销售量汇总.ipynb | +--第三问 gru算法.ipynb | +--第三问回归处理.ipynb | +--第三问求解混合规划.py | +--第二问各品类_定价_销量_频数 | | +--水生根茎类summary.xlsx | | +--第二问受频数影响的数据处理.py | | +--花叶类summary.xlsx | | +--花菜类summary.xlsx | | +--茄类summary.xlsx | | +--辣椒类summary.xlsx | | +--食用菌summary.xlsx | +--第二问规划求解 | | +--最优化系数表.xlsx | | +--第二问规划求解.py | +--箱型图(商品).ipynb | +--箱线图(品类).ipynb | +--销量.ipynb +--数据 | +--50个单品对应线性结果.xlsx | +--arima预测结果.xlsx | +--分频数各品类回归数据 | | +--x,y值.xlsx | | +

2026-01-14

基于LSTM的电力负荷预测python源码

随着社会的发展和科技的进步,电力系统在我们的生活中扮演着越来越重要的角色。电力系统的稳定运行对经济社会的发展具有决定性的影响,而电力负荷预测是电力系统运行中的一个关键环节。电力负荷预测是指在一定的时间内,根据历史负荷数据、气象条件以及经济活动等因素,预测未来某一时刻或某一时期内的电力需求量。准确的电力负荷预测可以帮助电力公司合理安排电力生产,提高电网的运行效率,减少电力供应不足或过剩的情况,对于保障电力供应的安全和经济性至关重要。 在众多预测方法中,深度学习由于其强大的特征提取能力和非线性建模能力而受到广泛关注。循环神经网络(Recurrent Neural Network, RNN)特别是其变体长短期记忆网络(Long Short-Term Memory, LSTM)因为能有效处理时间序列数据而被广泛应用于电力负荷预测领域。LSTM网络通过引入门控机制解决了传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题,提高了长期依赖信息处理的效率和准确性。 本压缩包中的“基于LSTM的电力负荷预测python源码”提供了完整的代码示例,旨在帮助研究人员或工程师快速搭建和部署基于LSTM的电力负荷预测模型。源码使用Python语言编写,并可能涉及到如TensorFlow、Keras等深度学习框架,以及Pandas、NumPy等数据处理库。通过本源码,用户能够学习到如何收集和处理历史电力负荷数据,构建LSTM模型,以及训练和评估模型性能等关键步骤。 源码的实现可能包含了以下主要功能: 1. 数据预处理:对原始电力负荷数据进行清洗和格式化,如去除噪声、填充缺失值、进行归一化处理等。 2. 数据分割:将数据集划分为训练集和测试集,确保模型训练的有效性和评估的准确性。 3. LSTM模型构建:定义LSTM网络结构,包括网络层数、每层的神经元数量、激活函数等。 4. 模型训练:利用训练

2026-01-13

高分获奖项目基于昇思MindSpore AI框架的肾脏肿瘤分割竞赛python源码

本项目是针对肾脏肿瘤分割竞赛的一个高分获奖解决方案,它基于昇思MindSpore AI框架实现,使用Python编程语言编写。MindSpore是华为推出的一款深度学习框架,旨在提供高效、灵活、便捷的AI模型训练和推理能力。在这个项目中,开发者通过MindSpore构建了一个能够准确分割肾脏和肿瘤的模型,对于医学图像分析具有重要意义。 我们要理解肾脏肿瘤分割的重要性。在医疗领域,精确地分割出肾脏和肿瘤区域可以帮助医生更准确地诊断病情,制定治疗方案,甚至预测疾病的预后。因此,这种技术对于提升医疗服务质量具有显著价值。 项目采用Python作为主要开发语言,Python是目前数据科学和机器学习领域广泛使用的编程语言,拥有丰富的库和工具支持。在这个项目中,Python不仅用于编写模型的逻辑,还可能涉及数据预处理、模型训练、结果评估等多个环节。 昇思MindSpore框架提供了自动化的并行计算和分布式训练能力,使得大规模数据的处理成为可能。其核心特性包括动态图模式和静态图模式,动态图便于调试和实验,静态图则优化了运行效率。此外,MindSpore支持GPU、CPU和Ascend等多种硬件平台,使得模型可以在不同硬件环境下运行。 项目中的"code"文件夹可能包含以下内容: 1. 数据预处理脚本:这部分代码会处理原始图像数据,如归一化、裁剪、增强等,以便输入到模型中。 2. 模型定义:定义基于MindSpore的卷积神经网络(CNN)或其他深度学习模型,用于分割任务。 3. 训练脚本:设置训练参数,如学习率、批次大小、迭代次数等,并进行模型训练。 4. 评估脚本:评估模型的性能,可能包括Dice系数、IoU(Intersection over Union)等指标。 5. 可视化和结果分析:将分割结果可视化,分析模型的优缺点。 6. 部署脚本:将训练好的模型部署为服务,供实际应

2026-01-13

基于vs2017+openMVG+openMVS三维重建解决方案以及基于Qt的可视化桌面平台C++源码+项目说明

基于vs2017+openMVG+openMVS三维重建解决方案以及基于Qt的可视化桌面平台C++源码+项目说明,三维重建作为计算机视觉领域的一个重要分支,在工业制造、虚拟现实、机器人导航等多个领域具有广泛的应用前景。随着技术的进步和硬件设施的提升,三维重建技术也从专业设备向桌面级应用发展,越来越贴近于普通开发者的使用。本项目针对这一需求,提出了一套基于Windows平台,利用Visual Studio 2017集成开发环境,结合openMVG(Multiple View Geometry)和openMVS(Multi-View Stereo)开源库的三维重建解决方案。同时,为了提高用户体验和方便开发者对三维重建过程和结果的观察与分析,项目还提供了基于Qt框架开发的桌面应用平台,以图形用户界面(GUI)的方式展现三维重建的可视化结果。 openMVG是一个专注于解决多视图几何问题的库,它提供了一系列用于处理多视图几何问题的算法,包括但不限于特征检测、特征匹配、运动恢复结构(SfM)、非线性优化等。openMVG在学术界和工业界都有一定的认可度,其高效性和稳定性使得它成为进行三维重建算法实现的理想选择。 openMVS是openMVG的一个扩展,它在此基础上进一步提供多视图立体(MVS)算法来生成密集的三维点云。MVS算法能够在给定稀疏重建结果的基础上,通过计算图像间的视差来重建场景的三维结构。openMVS能够利用这些视差信息进一步细化和优化三维重建结果,提高模型的细节丰富度和精确度。 本项目选择Visual Studio 2017作为开发环境,这是一款由微软公司推出的专业集成开发环境,它支持多种编程语言,提供了丰富的工具和插件,极大地提升了开发者的开发效率。此外,Visual Studio 2017对C++的支持十分出色,对于本项目的C++源码开发而言,提供了良好的

2026-01-13

激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明

激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明激光SLAM自主导航小车

2026-01-13

激光SLAM自主导航小车 基于ROS melodic 底盘控制器源码+说明.zip

在本项目中,我们关注的是一个基于ROS Melodic的激光SLAM自主导航小车系统。ROS(Robot Operating System)是一个广泛用于机器人领域的开源操作系统,它提供了丰富的软件库和工具,帮助开发者构建复杂的机器人应用程序。Melodic是ROS的一个版本,发布于2018年,支持Ubuntu 18.04 LTS操作系统。 硬件配置方面,这个小车使用了Intel Up Core作为工控机,这是一种高性能、低功耗的计算平台,适合在机器人应用中执行复杂的计算任务。底盘控制器选择了STM32F103ZETA6和STM32F103C8T6微控制器,它们是STMicroelectronics公司的产品,属于Cortex-M3内核的微控制器,具有高速处理能力和低功耗特性,适合控制小车的运动。 在传感器部分,项目采用了一款USB2.0 720P Camera用于视觉感知,可以捕捉环境图像进行处理。此外,还集成了一台思岚A1激光雷达,这是一个重要的感知设备,它能够实时扫描周围环境,提供精确的距离数据,用于构建地图和实现SLAM(Simultaneous Localization and Mapping,同时定位与建图)算法。 SLAM是机器人领域的一个核心问题,它允许机器人在未知环境中自主定位并建立环境地图。在这个项目中,激光雷达数据被用来执行SLAM算法,估计小车的实时位置以及构建周围环境的二维地图。ROS提供了多种SLAM库,如Gmapping和Hector SLAM,这些库可以处理激光雷达数据,生成可导航的地图。 代码部分("code"文件夹)很可能包含了实现这一系统的ROS节点和脚本。这些节点可能包括: 1. **激光雷达节点**:将接收到的激光雷达数据转换为ROS消息类型,例如`sensor_msgs/LaserScan`,并发布到相应的ROS主题上。

2026-01-13

python数字图像处理课设答题卡识别源码+文档说明

python数字图像处理课设答题卡识别源码+文档说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明python数字图像处理课设答题卡识别源码+文档说明py

2026-01-12

Python+OCR+OpenCV实现答题卡选项识别项目源码.zip

Python+OCR+OpenCV实现答题卡选项识别项目源码.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.zipPython+OCR+OpenCV实现答题卡选项识别项目源码.z

2026-01-12

基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip

基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv、pyqt三者结合的一款虹膜识别程序源码.zip基于python、opencv

2026-01-12

毕业设计基于机器视觉昆虫识别和数目统计python源码+项目说明+论文PDF

毕业设计基于机器视觉昆虫识别和数目统计python源码+项目说明+论文PDF,在当前的信息化时代,机器视觉技术在各个领域中的应用越来越广泛,尤其是在农业、生态学和环境监测等研究领域。本项目利用机器视觉技术,结合Python编程语言、pyqt5图形用户界面(GUI)设计工具,开发了一套可以识别昆虫种类并对昆虫数量进行统计的系统。该系统具有实用价值,可以广泛应用于昆虫学研究、农作物害虫监测、生物多样性调查等领域。 项目的核心是基于机器学习的昆虫图像识别算法,通过训练集对昆虫的形态特征进行学习,实现对昆虫图像的有效分类。项目采用深度学习中的卷积神经网络(CNN)模型,这类模型特别适合于图像处理任务,能够自动提取图像中的特征,并完成复杂图像的分类任务。在项目开发过程中,首先需要收集昆虫的图像数据集,并对图像进行预处理,包括调整图像大小、归一化像素值、数据增强等,以提高模型的泛化能力。接着进行模型的设计和训练,将训练好的模型用于昆虫图像的识别。 项目中的Python源码是实现机器视觉昆虫识别功能的关键,它涵盖了图像处理、模型训练、模型评估和预测等步骤。源码中可能包含了加载数据集、构建CNN模型、训练模型、保存训练好的模型等函数或类。这些代码不仅需要编写得准确无误,而且要具有良好的结构和注释,以便于其他开发者阅读和理解。 为了使非专业用户也能轻松使用这一昆虫识别系统,项目还使用了pyqt5设计了图形用户界面。PyQt5是Python的一个GUI框架,它可以创建跨平台的应用程序,界面美观、操作简便。在GUI的设计中,开发者需要考虑用户交互体验,设计直观的操作流程,如上传图片、展示识别结果、显示统计数字等功能。同时,GUI界面还应当提供用户交互反馈,比如操作指引、错误提示等,确保用户在使用过程中不会遇到困惑。 整个项目不仅包含技术层面的实现,还包括了项目说明文档。项目说明文档详细介

2026-01-12

基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF

基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型+论文PDF基于机器视觉实现昆虫识别计数系统python源码+数据+模型

2026-01-12

期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释

期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt5实现的二手房价分析与预测系统源码+数据集+详细注释期末大作业基于python和pyqt

2026-01-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除