数学——Euler方法求解微分方程详解(python3)

数学——Euler方法求解微分方程详解(python3)

 

分享是最快乐的一件事儿,写出好文章,分享新知识,是一件费时费力的事儿,一分耕耘一分收获,希望自己从菜鸟逐渐转变为技术原创大神,大家的支持、点赞以及打赏是我持续耕耘的动力。谢谢每一位读者!

 

算法的数学描述图解

实例

用Euler算法求解初值问题

dydx=y+2xy2dydx=y+2xy2

初始条件 y(0)=1y(0)=1,自变量的取值范围x[0,2]x∈[0,2]

 

算法Python3代码求解

 

# 导入包
import numpy as np
import matplotlib.pyplot as plt # 定义求解函数 y_dot = y + 2*x/(y*y) def fx(y, x): return y + 2*x/(y*y) # 算法定义 def ode_euler(f, y0, tf, h): """ Solve and ODE using Euler method. Solve the ODE y_dot = f(y, t) Parameters ------------ :param f: function Function describing the ODE :param y0: array_like Initial conditions. :param tf: float Final time. :param h: float Time step :return: y : array_like Solution to the ODE. t : array_like Time vector. """ y0 = np.array(y0) ts = np.arange(0, tf + h, h) y = np.empty((ts.size, y0.size)) y[0, :] = y0 for t, i in zip(ts[1:], range(ts.size - 1)): y[i + 1, :] = y[i, :] + h * f(y[i, :], t) return y, ts # 实例应用案例 def newton_cooling_example(): print('Solving Newton Cooling ODE...') y, ts = ode_euler(fx, 1, 2, 0.01) print('Done.') plt.figure() plt.plot(ts, y) plt.xlabel('time [s]') plt.title('Solution to the Newton cooling equation') plt.show()

代码中的部分函数理解

numpy.array

numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
参考numpy.array
output:创建一个array,返回类型为ndarray
实例

np.array([1, 2, 3.0]) # array([1., 2., 3.]) np.array([[1, 2], [3, 4]]) # array([[1, 2], [3, 4]]) np.array([1, 2, 3], dtype=complex) # array([1.+0.j, 2.+0.j, 3.+0.j])

numpy.arange

参考numpy.arange
numpy.arange([start, ]stop, [step, ]dtype=None)
作用:在给定间隔内返回均匀间隔的值。
值在半开区间[start, stop)内生成(换句话说,包括开始但不包括终止)。返回的是ndarray而不是列表。
np.arange()函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况 :

1. 一个参数时,参数值为终点,起点取默认值0,步长取默认值1。 
2. 两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。 
3. 三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数。

案例

np.arange(3,7) # array([3, 4, 5, 6]) np.arange(3,7,2) # array([3, 5])

numpy.ma.size

numpy.ma.size(obj, axis=None)
参考
案例

a = np.array([[1,2,3],[4,5,6]])
np.size(a) # 6
np.size(a,1) # 3
np.size(a,0) # 2

numpy.empty

参考
numpy.empty(shape, dtype=float, order='C')
shape : int or tuple of int Shape of the empty array, e.g., (2, 3) or 2.
out : ndarray
案例

np.empty([2, 2])
# 结果
array([[ -9.74499359e+001, 6.69583040e-309],
       [ 2.13182611e-314, 3.06959433e-309]]) #random
np.empty([2, 2], dtype=int) # 结果 array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #random

转载于:https://www.cnblogs.com/think90/p/11558526.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值