自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(348)
  • 资源 (21)

原创 如何理解C++的class类?

文章目录"类" 的介绍C++类的定义C++类的实现成员函数的实现可以在类定义时同时完成在类外定义成员函数对象的作用域、可见域与生存周期构造函数“类” 的介绍在C++中, 用 “类” 来描述 “对象”, 所谓的"对象"是指现实世界中的一切事物。那么类就可以看做是对相似事物的抽象, 找到这些不同事物间的共同点, 如自行车和摩托车, 首先他们都属于"对象", 并且具有一定得相同点, 和一些不同点, 相同点如他们都有质量、都有两个轮子, 都是属于交通工具等。“都有质量”、"两个轮子"属于这个对象的属性, 而"都

2020-10-23 17:28:17 3

原创 如何理解C++线程和锁的用法?

锁unique_lock lock(mMutexMode);std::mutex mMutexMode;std::unique_lock为锁管理模板类,是对通用mutex的封装。std::unique_lock对象以独占所有权的方式(unique owership)管理mutex对象的上锁和解锁操作,即在unique_lock对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而unique_lock的生命周期结束之后,它所管理的锁对象会被解锁。使用thread 线程名来新建一个线程并在线

2020-10-23 16:28:16 4

原创 ROS的三维可视化工具RVIZ

文章目录RVIZ使用教程借助ROS可视化工具显示自己的数据在RVIZ中显示坐标系更多可视化内容请参考ROS官方教程RVIZ使用教程RViz是ROS的三维可视化工具。它的主要目的是以三维方式显示ROS消息,可以将数据进行可视化表达。例如,可以无需编程就能表达激光测距仪(LRF)传感器中的传感器到障碍物的距离,RealSense、Kinect或Xtion等三维距离传感器的点云数据(PCD, Point Cloud Data),从相机获取的图像值等。rviz提供了很多插件,这些插件可以显示图像、模型、路

2020-10-23 15:12:53 7

原创 ROS坐标变换robot_state_publisher static_transform_publisher

文章目录ROS坐标系添加一个静止坐标系 adding a frame添加一个移动坐标系 moving frame监听 lookupTransform监听 transformPointrobot_state_publisherstatic_transform_publisher参考资料ROS坐标系坐标系与话题之间的关系话题属于某个坐标系,话题是包含特定信息的载体。话题是数据要依赖某个坐标系,数据要在坐标系之间转换。link 创建坐标系比如创建了相机坐标系,那么相机数据的发布,就是借助于话题发布的

2020-10-23 13:44:10 11

原创 TUM数据集RGBD-Benchmark工具之evaluate_rpe.py

TUM数据集RGBD-Benchmark工具之evaluate_ate.pyRPE相对误差—evaluate_rpe.py适用于评估视觉里程计的漂移量为了计算相对姿势误差,需要使用脚本’‘evaluate_rpe.py’’。此脚本计算时间戳对之间相对运动中的误差。默认情况下,该脚本计算估计轨迹文件中所有时间戳对之间的错误。由于估计轨迹中的时间戳对的数量在轨迹的长度上是二次的,因此将该集合下采样为固定数量(-max_pairs)是有意义的。或者,可以选择使用固定窗口大小(-fixed_delta)

2020-10-22 23:23:00 11

原创 TUM数据集RGBD-Benchmark工具之evaluate_ate.py

评估标准运行完rgbd_tum 后生成CameraTrajectory.txt在估计了相机轨迹并将其保存到文件后,我们需要通过将其与地面实况进行比较来评估估计轨迹中的误差。有不同的误差指标。两种突出的方法是绝对轨迹误差(ATE)和相对姿态误差(RPE)。ATE适合评估视觉SLAM系统的性能。相比之下,RPE适合评估视觉里程计的漂移量,例如每秒的漂移量。ATE 绝对误差evaluate_ate.py绝对轨迹误差脚本直接测量真实轨迹和估计轨迹的点之间的差异。作为预处理步骤,我们使用时间戳将估计

2020-10-22 23:20:16 12

原创 TUM数据集RGBD-Benchmark工具之associate.py

TUM数据集RGBD-Benchmark工具使用associate.py通过timestamp用于生成rgb和depth关联文件python associate.py rgb.txt depth.txt > fr_pioneer_slam2.txt语法糖解读 list = [[v.strip() for v in line.split(" ") if v.strip() != ""] for line in lines if len(line) > 0 and line[0] != "

2020-10-18 12:25:47 49

原创 循环读取rgbd_dataset_freiburg1_desk数据集每一张图片并且重命名的两种方法

#include <iostream>#include <fstream>#include <string>#include <iomanip>#include <dirent.h>#include <opencv2/opencv.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using nam

2020-10-16 09:13:58 56

原创 C++构造函数之无参构造函数有参构造函数拷贝构造函数

文章目录函数的定义函数的的使用方法函数的返回值值传递指针传递引用传递C++引用作为函数返回值函数重载(Function Overloading)运算符重载(Operator Overloading)以成员函数的形式重载构造函数函数的定义函数就是一段封装好的,可以重复使用的代码,它使得我们的程序更加模块化,不需要编写大量重复的代码。函数可以提前保存起来,并给它起一个独一无二的名字,只要知道它的名字就能使用这段代码。函数还可以接收数据,并根据数据的不同做出不同的操作,最后再把处理结果反馈给我们。对于函

2020-10-12 16:37:18 260

原创 yaml(Yet Another Markup Language )三种读写原理和实践详细解读

文章目录基本语法数据类型YAML 对象YAML 数组复合结构纯量引用基本语法大小写敏感使用缩进表示层级关系缩进不允许使用tab,只允许空格缩进的空格数不重要,只要相同层级的元素左对齐即可'#'表示注释数据类型对象:键值对的集合,又称为映射(mapping)/ 哈希(hashes) / 字典(dictionary)数组:一组按次序排列的值,又称为序列(sequence) / 列表(list)纯量(scalars):单个的、不可再分的值YAML 对象对象键值对使用冒号结构表示 key:

2020-09-23 10:17:21 739

原创 Ubuntu下如何使用git创建代码仓库对本地代码进行版本控制?

文章目录git的工作流程使用git提高代码阅读效率Ubuntu 安装 git配置 git 用户名和邮箱git 的三个工作区域在本地新建一个git仓库常用 Git 命令本地代码如何推送到github生成ssh公钥并添加公钥到 github在github上创建一个仓库Ubuntu16.04+Clion环境下使用git进行版本控制git的工作流程首先我们用的是git,那什么是git要搞清楚,git的工作流程要搞清楚,当你搞清楚这些东西的时候,就不会被各种IDE,github, gitlab所困扰, 下面我们来

2020-09-23 10:04:41 505

原创 视觉SLAM十四讲实践笔记学习顺序

视觉SLAM十四讲实践笔记(一)视觉SLAM十四讲实践笔记之坐标系转换视觉SLAM十四讲实践笔记之轨迹可视化视觉SLAM十四讲实践笔记之四种位姿可视化

2020-09-09 22:45:28 804

原创 csdn编辑器常用的markdown语法

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

2020-09-05 15:44:48 258

原创 ubunut16.04系统下vim编辑器详细使用图文教程

文章目录模式插入模式删除命令撤销和恢复命令粘贴命令拷贝命令替换命令替换模式修改命令统计跳转定位括号缩进搜索正向搜索反向搜索特殊字符搜索替换替换单个字符替换整行字符替换所有字符选择替换编辑模式下执行shell脚本文件另存为局部内容另存为合并文件打开多个文件vim全选(高亮显示):按esc后,然后ggvG或者ggVGvim全部复制:按esc后,然后ggyGvim全部删除:按esc后,然后dG解析:gg:是让光标移到首行,在vim才有效,vi中无效v : 是进入Visual(可视)模

2020-09-04 21:00:31 128

原创 Ubuntu16.04系统下查看当前目录各个文件及占用空间大小

文章目录查看当前目录下各个文件及目录占用空间大小查看文件的总数目和更详细的内容查看指定文件的大小Linux下统计当前目录下的文件数量(不包含子目录中的文件)ubuntu下如何查看目录和文件的数量以及查找包含指定字符串的文件子文件夹的数量文件的数量查看当前目录下各个文件及目录占用空间大小查看文件的总数目和更详细的内容查看指定文件的大小$ ls -al tina.img -rwxrwxr-x 1 q q 33050624 3月 27 14:17 tina.img"ls"命令显示出来的大小单

2020-09-03 17:50:30 382

原创 ROS通过SSH实现多机通信

文章目录ssh远程登录配置网络配置ssh远程登录操作嵌入式pc修改~/.bashrc文件设置 ros master系统时间同步ssh远程登录ssh ssh_username@10.0.0.130sudo rm /var/cache/apt/archives/locksudo rm /var/lib/dpkg/lock配置网络可以让两台机器连接同一个无线,或者一台机器给另外一台机器开热点。配置ssh远程登录操作嵌入式pc两台pc安装ssh服务器:sudo apt-get insta

2020-09-02 20:50:17 1433 1

原创 Ubuntu16.04系统下sftp、scp、ssh、telnet、登录服务器上传下载数据

文章目录SFTP协议使用sftp默认的端口号进行登录服务器使用sftp加端口号的方式进行登录服务器使用sftp下载文件或者文件夹到本地使用sftp上传文件或者文件夹到服务器SCP协议使用scp下载文件或者文件夹到本地使用scp上传文件或者文件夹到服务器SSH协议ssh默认端口登录服务器ssh指定端口登录服务器Telnet协议Telnet登录服务器SFTP协议sftp是Secure File Transfer Protocol的缩写,安全文件传送协议。可以为传输文件提供一种安全的网络的加密方法。使用sf

2020-09-02 20:47:59 538 1

原创 机器人二维导航教程汇总

*学习过程中任何疑问可以添加公众号"小秋SLAM笔记"答疑交流

2020-08-31 14:40:54 1057

原创 C++ vector、set、map、

文章目录std::vectorvector作为参数的三种传参方式vector 的 reserve resizevector作为参数的三种传参方式std::vector动态数组,数组长度可变方法:push_back(i) 在末尾加入一个元素ipop_back() 把末尾元素弹出size() 获取容器长度claer() 清空容器内容(没有清理内存)insert(const_iterator position, InputIterator first, InputIterator last)往p

2020-08-26 12:01:49 535

原创 C++ 指向类的指针 指向类的对象

一个指向 C++ 类的指针与指向结构的指针类似,访问指向类的指针的成员,需要使用成员访问运算符 ->,就像访问指向结构的指针一样。与所有的指针一样,您必须在使用指针之前,对指针进行初始化。C++的精髓之一就是多态性,只有指针或者引用可以达到多态。对象不行用指针:第一实现多态。第二在函数调用,传指针参数。不管你的对象或结构参数多么庞大,你用指针,传过去的就是4个字节。如果用对象,参数传递占用的资源就太大了类的指针:他是一个内存地址值,他指向内存中存放的类对象(包括一些成员变量所赋的值).

2020-08-26 10:47:21 5121 2

原创 C++ Member Variables 成员变量

成员变量定义在类中,和类的方法处于同一个层次。成员变量相当于银行中的取号机,银行中的人都可以对其使用。成员变量的语法如下:变量修饰符 类型 变量名;

2020-08-26 10:35:40 486

原创 Ubuntu16.04系统下用C++编写ROS发布器的节点和订阅器的节点详细图文教程

ROS master node topic message service parameter server

2020-08-20 11:35:39 469 1

原创 “宏定义“对于跨平台的大型C/C++项目到底有多重要?

`#if`、`#elif`、`#else` 和 `#endif` 都是预处理命令。根据不同情况编译不同代码、产生不同目标文件的机制,称为条件编译。条件编译是预处理程序的功能,不是编译器的功能。

2020-08-19 10:12:28 104

原创 均值、标准差、标准误差用例子告诉你是如何计算的

文章目录均值归一化标准差均值均值存在的意义:均值(期望)描述的是样本集合的中间点(平均值)均值的计算方法是:先对所有数据求和然后除以数据的个数,如下图所示归一化归一化操作就是让均值为0标准差标准差存在的意义:是样本集合的各个样本点到均值的距离之平均,就是总体的分布情况,标准差小的距离均值较为集中。标准差的计算方法:标准差是 每一个数据减去均值然后平方,所有的数据都这样计算然后求和,然后除以数据的的个数,最后把这个数开平方运算(注意,如果要求样本的标准差,则应除以n-1,即样本大小减1

2020-08-17 18:50:05 211

原创 相机标定目的以及标定原理

相机标定的目的建立相机成像几何模型并矫正透镜畸变-> 相机标定的目的之一是为了建立物体从三维世界到成像平面上各坐标点的对应关系建立相机成像几何模型:计算机视觉的首要任务就是要通过拍摄到的图像信息获取到物体在真实三维世界里相对应的信息,于是,建立物体从三维世界映射到相机成像平面这一过程中的几何模型就显得尤为重要,而这一过程最关键的部分就是要得到相机的内参和外参矫正透镜畸变:我们最开始接触到的成像方面的知识应该是有关小孔成像的,但是由于这种成像方式只有小孔部分能透过光线就会导致物体的成像亮度很低,于

2020-08-17 18:40:26 163

原创 自动驾驶无人车传感器介绍以及坐标转换信息融合

文章目录汽车控制单元Vehicle Control UnitGPS天线惯导64线激光雷达前视摄像头和360度环视摄像头毫米波雷达超声波雷达UPA超声波雷达APA超声波雷达单线激光雷达四线激光雷达16/32/64线激光雷达单目摄像机模组只包含一个摄像机和一个镜头。双目摄像机三目摄像机环视摄像机高分辨率地图(HD Map,High Definition Map)无人驾驶中的坐标转换传感器包括:GPS+IMU 全球定位+惯性测量Camera 视觉传感器Lidar 激光传感器Millimeter Wav

2020-08-17 17:55:04 347

原创 视觉SLAM十四讲从理论到实践全书实践串讲

小秋SLAM笔记

2020-08-17 17:20:24 140

原创 ubuntu16.04如何安装foxit pdf阅读器

https://www.foxitsoftware.com/downloads/thanks.html?product=Foxit-Reader&platform=Linux-64-bit&version=&package_type=&language=&formId=download-reader

2020-08-17 10:42:57 46

原创 如何理解SLAM用到的传感器轮式里程计IMU、雷达、相机的工作原理与使用场景?

如需答疑请关注公众号 小秋salm笔记

2020-08-12 19:46:06 3060

原创 absolute coordinates 绝对坐标

absolute coordinates绝对坐标绝对坐标系统是所有坐标全部基于一个固定的坐标系原点的位置的描述的坐标系统。绝对坐标是一个固定的坐标位置,使用它输入的点坐标不会因参照物的不同而不同。绝对坐标是参照坐标系的原点而言。当你确切地知道点在世界坐标系中的位置时,就使用绝对坐标。绝对坐标包括英文名是“ALE”相对坐标的英文名是“INC”absolute frame绝对坐标系...

2020-08-05 14:00:49 66

原创 ORB-SLAM2论文中的公式我帮你整理好了

文章目录前言ORB_SLAM2论文翻译robust Huber cost function协方差矩阵前言陆续更新ORB_SLAM2论文翻译ORB-SLAM2 论文全文翻译robust Huber cost function在统计学习角度,Huber损失函数是一种使用鲁棒性回归的损失函数,它相比均方误差来说,它对异常值不敏感。常常被用于分类问题上。这个函数对于小的a值误差函数是二次的,而对大的值误差函数是线性的。变量a表述residuals,用以描述观察值与预测值之差:a = y - f(x)

2020-08-04 14:08:09 144

原创 视觉SLAM里的最小二乘Bundle Adjustment问题

欢迎关注公众号 小秋SLAM笔记

2020-08-02 13:29:56 115

原创 ORB_SLAM2系统System.cc的TrackMonocular()函数都干了什么?

cv::Mat System::TrackMonocular(const cv::Mat &im, const double &timestamp)判断传感器类型mSensor!=MONOCULAR判断mbActivateLocalizationMode这个变量的值如果是真关闭local mapping线程执行tracking线程如果是假开启local mapping线程和tracking线程判断mbReset这个变量的值ORB_SLAM2算法源码解读之mbRese

2020-07-28 17:28:32 68

原创 ORB_SLAM2系统C++版本的mono_tum.cc源码解读

具体用到了那些你不知道的C++技巧呢?

2020-07-28 14:19:32 103

原创 getline()函数从终端和从文件中读数据方式代码实践

getline()函数功能是读入一行数据std::cin ; istream 写入文件中从键盘读入,也就是终端输入的方式ifstream f; ifstream 写入文件中从内存读出,也就是从文件读取的方式ifstream和ofstream分别是从和ostream继承来的#include <iostream>#include <string>#include <fstream>using namespace std;int main(){ .

2020-07-28 11:13:16 96

原创 用代码告诉你什么是函数的值传递和引用传递

值传递:形参是实参的拷贝,改变函数形参并不影响函数外部的实参,只需要传递参数,调用函数不对实参进行操作,形参的值发生改变,实参的值也完全不受影响。引用传递:被调函数的形参虽然也作为局部变量在栈中开辟了内存空间,但在栈中放的是由主调函数放进来的实参变量的地址。被调函数对形参的任何操作都被间接寻址,即通过栈中的存放的地址访问主调函数中的实参变量,因此形参在任意改动都直接影响到实参。#include <iostream>using namespace std;void zhi_chuan.

2020-07-28 10:10:42 60

原创 支持鱼眼相机和IMU的开源ORB_SLAM3最详细的编译测试教程来了

ORB-SLAM3 is the first real-time SLAM library able to perform Visual, Visual-Inertial and Multi-Map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. In all sensor configurations, ORB-SLAM3 is as robust as the best sy

2020-07-25 19:31:50 3576 7

原创 linux下在终端快速打开一个目录nautilus命令

nautilus是GNOME桌面下的一个文件管理工具。通过这个命令我们可以在终端下非常方便的打开指定目录终端输入如下命令~$ nautilus /home/q/projects/ORB_SLAM2/cmake_modules/会打开下面的目录

2020-07-25 13:41:09 103

原创 Gtk-ERROR **: GTK+ 2.x symbols detected. Using GTK+ 2.x and GTK+ 3 in the same process is not suppor

Gtk-ERROR **: GTK+ 2.x symbols detected. Using GTK+ 2.x and GTK+ 3 in the same process is not supportedcmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -DWITH_GTK_2_X=ON ..make -j4sudo make install用这个参数重新编译一下opencv-3.4.0...

2020-07-20 17:58:56 538

原创 为什么C++大型项目中经常使用对象指针,而不是直接使用对象本身?

C++ 中经常出现使用对象指针,而不是直接使用对象本身的代码,Object *myObject = new Object;而不是使用:Object myObject;要不就是调用对象的方法myObject.testFunc();而是得写成这样:myObject->testFunc();何时使用动态分配(使用 new 方法)什么时候该使用指针?定义对象的方式比起使用手工动态分配(或new指针)的方式会更加合理以及安全。通过 Object myObject 方式定义对象,对象

2020-07-16 15:27:40 286

方向余弦旋转矩阵原理教程.zip

方向余弦和旋转矩阵原理讲解的非常详细的教程,

2020-08-12

Accurate and Robust Monocular SLAM with Omnidirectional Cameras.pdf

Accurate and Robust Monocular SLAM with Omnidirectional Cameras

2020-07-24

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and M.pdf

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM

2020-07-24

ros by example indigo 1and2 pdf+源码.zip

ROS By Example Volume 1 +源代码 ROS By Example Volume 2 +源代码

2020-05-09

SLAM-with-RTAB-Map.pdf

Simultaneous Localization and Mapping (SLAM) with RTAB-Map

2020-05-09

视觉导航送餐机器人.pdf

伽利略视觉导航系统是一个融合了多种传感器,以视觉导航为主导的机器人定位和运动控制系统。适用 于室内环境和开阔的室外环境。伽利略系统根据不同的应用场景,有着不同使用方法。本手册介绍在 配送机器人应用场景下的伽利略导航系统的使用方法。 对于送餐机器人使用环境,我们开发了很多实用的功能。 送餐机器人 Android App 送餐机器人自定义语音工具

2020-05-09

ROS Navigation Tuning Guide.pdf

Abstract The ROS navigation stack is powerful for mobile robots to move from place to place reliably. The job of navigation stack is to produce a safe path for the robot to execute, by processing data from odometry, sensors and environment map. Maximizing the performance of this navigation stack requires some fine tuning of parameters, and this is not as simple as it looks. One who is sophomoric about the concepts and reasoning may try things randomly, and wastes a lot of time. This article intends to guide the reader through the process of fine tuning naviga- tion parameters. It is the reference when someone need to know the ”how” and ”why” when setting the value of key parameters. This guide assumes that the reader has already set up the navigation stack and ready to optimize it. This is also a summary of my work with the ROS navigation stack.

2020-05-09

CNN E XPLAINER : Learning Convolutional Neural Networks with Interactive Vis.pdf

CNN E XPLAINER : Learning Convolutional Neural Networks with Interactive Visualization

2020-05-09

Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling.pdf

Abstract In this paper, we present a path planner for low-altitude terrain coverage in known environments with unmanned rotary-wing micro aerial vehi- cles (MAVs). Airborne systems can assist humanitarian demining by surveying suspected hazardous areas (SHAs) with cameras, ground-penetrating synthetic aperture radar (GPSAR), and metal detectors. Most available coverage plan- ner implementations for MAVs do not consider obstacles and thus cannot be deployed in obstructed environments. We describe an open source framework to perform coverage planning in polygon flight corridors with obstacles. Our planner extends boustrophedon coverage planning by optimizing over different sweep combinations to find the optimal sweep path, and considers obstacles during transition flights between cells. We evaluate the path planner on 320 synthetic maps and show that it is able to solve realistic planning instances fast enough to run in the field. The planner achieves 14 % lower path costs than a conventional coverage planner. We validate the planner on a real platform where we show low-altitude coverage over a sloped terrain with trees.

2020-05-09

Robust Map Optimization using dynamic covariance scaling.pdf

对于SLAM鲁棒性的问题,总结起来大概从以下几个步骤展开。 1.传感器数据的精确度检测。 2.数据关联方法的进一步提高。包括回环检测下的数据关联,动态场景下的数据关联等。 3.系统在应对错误时的机制,包括对错误产生的预判,错误产生后的恢复机制等。 5.对多传感器,异构传感器,异构信息等多方面的数据关联方法的探索。 6.参数的自动调整能力。

2020-05-09

A Flexible and Scalable SLAM System with Full 3D Motion Estimation.pdf

该论文是ROS中hector_mapping建图包的论文,发表于2010年但hector_mapping在ROS中只更新到了Kinetic版本。

2020-05-09

数据结构补充之图论总结.pdf

图论 Graph Theory 1.1.定义与术语 Definition and Glossary 1.1.1. 图与网络 Graph and Network 1.1.2. 图的术语 Glossary of Graph 1.1.3. 路径与回路Path and Cycle 1.1.4. 连通性 Connectivity 1.1.5. 图论中特殊的集合 Sets in graph 1.1.6. 匹配 Matching 1.1.7. 树 Tree 1.1.8. 组合优化 Combinatorial optimization 1.2.图的表示 Expressions of graph 1.2.1. 邻接矩阵 Adjacency matrix 1.2.2. 关联矩阵 Incidence matrix 1.2.3. 邻接表 Adjacency list 1.2.4. 弧表 Arc list 1.2.5. 星形表示 Star 1.3.图的遍历 Traveling in graph 1.3.1. 深度优先搜索 Depth first search (DFS) 1.3.1.1.概念 1.3.1.2.求无向连通图中的桥 Finding bridges in undirected graph 1.3.2. 广度优先搜索 Breadth first search (BFS) 1.4.拓扑排序 Topological sort 1.5.路径与回路 Paths and circuits 1.5.1. 欧拉路径或回路 Eulerian path 1.5.1.1.无向图 1.5.1.2.有向图 1.5.1.3.混合图 1.5.1.4.无权图 Unweighted 1.5.1.5.有权图 Weighed — 中国邮路问题 The Chinese post problem 1.5.2. Hamiltonian Cycle 哈氏路径与回路 1.5.2.1.无权图 Unweighted 1.5.2.2. 有权图 Weighed — 旅行商问题 The travelling salesman problem 1.6. 网络优化 Network optimization 1.6.1. 最小生成树 Minimum spanning trees 1.6.1.1.基本算法 Basic algorithms 1.6.1.1.1. Prim 1.6.1.1.2. Kruskal 1.6.1.1.3. Sollin (Boruvka) 1.6.1.2. 扩展模型 Extended models 1.6.1.2.1. 度限制生成树 Minimum degree-bounded spanning trees 1.6.1.2.2. k 小生成树 The k minimum spanning tree problem(k-MST) 1.6.2. 最短路 Shortest paths 1.6.2.1. 单源最短路 Single-source shortest paths 1.6.2.1.1. 基本算法 Basic algorithms 1/33[ADN.cn][library]summary 图论总结 2013-12-21 1.6.2.1.1.1. ..................................................................................................... Dijkstra 1.6.2.1.1.2. .......................................................................................... Bellman-Ford 1.6.2.1.1.2.1. .................................... Shortest path faster algorithm(SPFA) 1.6.2.1.2. 应用 Applications 1.6.2.1.2.1. ........................... 差分约束系统 System of difference constraints 1.6.2.1.2.2. .......................... 有向无环图上的最短路 Shortest paths in DAG 1.6.2.2. 所有顶点对间最短路 All-pairs shortest paths 1.6.2.2.1. 基本算法 Basic algorithms 1.6.2.2.1.1. ....................................................................................... Floyd-Warshall 1.6.2.2.1.2. .................................................................................................... Johnson 1.6.3. 网络流 Flow network 1.6.3.1. 最大流 Maximum flow 1.6.3.1.1. 基本算法 Basic algorithms 1.6.3.1.1.1. ........................................................................ Ford-Fulkerson method 1.6.3.1.1.1.1. ......................................................... Edmonds-Karp algorithm 1.6.3.1.1.1.1.1. ................................................... M inimum length path 1.6.3.1.1.1.1.2. ........................................... Maximum capability path 1.6.3.1.1.2. ............................................... 预流推进算法 Preflow push method 1.6.3.1.1.2.1. ................................................................................. Push-relabel 1.6.3.1.1.2.2. .......................................................................... Relabel-to-front 1.6.3.1.1.3. .......................................................................................... Dinic method 1.6.3.1.2. 扩展模型 Extended models 1.6.3.1.2.1. ............................................................................... 有上下界的流问题 1.6.3.2. 最小费用流 Minimum cost flow 1.6.3.2.1. 找最小费用路 Finding minimum cost path 1.6.3.2.2. 找负权圈 Finding negative circle 1.6.3.2.3. 网络单纯形 Network simplex algorithm 1.6.4. 匹配 Matching 1.6.4.1. 二分图 Bipartite Graph 1.6.4.1.1. 无权图 -匈牙利算法 Unweighted - Hopcroft and Karp algorithm 1.6.4.1.2. 带权图 -KM 算法 Weighted – Kuhn-Munkres(KM) algorithm 1.6.4.2. 一般图 General Graph 1.6.4.2.1. 无权图 -带花树算法 Unweighted - Blossom (Edmonds)

2020-05-09

双目立体视觉技术.pdf

基于双目立体视觉技术的燃烧诊断方法研究 对于燃烧流场三维信息的获取始终是燃烧诊断学科追求的目标,论文所做的 工作也是出于这个目的。论文将双目立体视觉技术引入燃烧诊断领域,实现了对 非预混冲击火焰表面的三维重建,通过重建可以清晰地看到火焰表面的三维几何 结构。论文还对连续拍摄的图像对进行处理,得到火焰在某一微小时间间隔中的 发展情况的三维重建,这对研究燃烧流场的燃烧状态有很大的帮助。论文搭建了 用于燃烧流场诊断的高速双目立体视觉系统,并开发了相应的软件。 论文对双目立体视觉原理进行了详尽的分析。论文首先对相机的模型进行了 分析,在相机成像的线性模型的基础上,论文考虑了相机镜头的畸变,引入了精 度更高的非线性模型。在建立了单相机模型之后,论文对两个相机之间的关系进 行了分析,给出了系统的模型。 在建立了相机和系统的模型之后,论文对相机和系统进行了标定。论文采用 张正友标定法对两个相机分别进行标定,然后采用重投影法对系统进行标定,并 通过对特征点的三维重构检验了标定精度。实验结果表明,标定精度令人满意。 在图像匹配环节,论文详细介绍了极线校正的原理和方法,之后对图像对进 行了匹配。匹配实验表明,匹配是非常成功的。 论文进行了三维重建实验。论文首先对一个盒子进行了重建,通过重建展现 了利用双目立体视觉技术对物体进行三维重建的流程,并且对重建的精度进行了 检验。然后论文对非预混冲击火焰进行了重建,通过重建可以清晰地看到火焰的 三维空间结构。通过对连续拍摄的图像进行比较,得到火焰在微小时间间隔里面 的发展情况,这对研究燃烧火焰的特性来说是非常重要的。

2020-05-09

git实战课堂笔记.pdf

git实战课堂笔记.pdf

2020-05-05

ThinkPad E550、E555 和E550c用户指南V5.0.pdf

ThinkPad E550、E555 和E550c用户指南V5.0.pdf 更换固态 光驱位加装固态 扩展内存 拆机指导

2020-05-05

多视几何pdf+中文ppt.zip

Multiple View Geometry in Computer Vision.2nd Edition 英文多视几何pdf+中文讲解ppt.zip

2020-04-29

opencv_contrib-3.2.0.zip

vgg_generated_48.i ... vgg_generated_64.i ... vgg_generated_80.i ... vgg_generated_120.i ... boostdesc_bgm.i ... boostdesc_bgm_bi.i ... boostdesc_bgm_hd.i ... boostdesc_binboost_064.i ... boostdesc_binboost_128.i ... boostdesc_binboost_256.i ... boostdesc_lbgm.i ...

2020-02-07

CS231N课件.zip

CS231N课件

2019-06-06

ROS_aswome.zip

小强ROS机器人用户手册(第二版).pdf 开源机器人操作系统ROS.pdf

2019-06-06

ThinkPad E530.pdf

ThinkPad E530 加装 SSD 固态硬盘过程分享【多图详解】

2019-05-31

学习opencv超高清带目录带小标签超详细

很清晰的版本 带超详细的目录 你值得拥有 还有意外小惊喜哦!

2018-08-28

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除