题意
给定一个长度为 n 的 01 串,完成 m 种操作——操作分两种翻转 [l,r] 区间中的元素、求区间 [l,r] 有多少个不同的子序列。
1≤n,m≤105
思路
看到这种题目,应该条件反射的去想一下线段树。
但首先还是从一个询问开始,对于一个长度为 n 的串,设 dpi,j 为前 i 位组成的序列中,以 j 结尾的串的个数,若串的第 i 位为 j 有递推式:
dpi,j=dpi−1,0+dpi−1,1+1
dpi,!j=dpi−1,!j
上式是以 0j,1j 结尾的串的个数,加上单独一个j ;下式则直接转移上一位的信息。
那么将 {dp0,0,dp0,1,1} 作为初始矩阵,用线段树维护区间对应的转移矩阵即可。
代码
- #include<bits/stdc++.h>
- #define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
- #define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
- typedef long long LL;
- using namespace std;
- const int N=1e5+5;
- const int P=1e9+7;
- struct Matrix
- {
- int n,m,a[4][4];
- int *operator [](const int x){return a[x];}
- void resize(int _n,int _m){n=_n,m=_m;}
- Matrix operator *(const Matrix &_)const
- {
- Matrix res;res.resize(n,_.m);
- FOR(i,1,n)FOR(j,1,_.m)
- {
- res[i][j]=0;
- FOR(k,1,m)(res[i][j]+=1ll*a[i][k]*_.a[k][j]%P)%=P;
- }
- return res;
- }
- void flip()
- {
- swap(a[1][1],a[2][2]);
- swap(a[1][2],a[2][1]);
- swap(a[3][1],a[3][2]);
- }
- Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
- };
- const Matrix Zero=(Matrix){
- 3,3,
- 0,0,0,0,
- 0,1,0,0,
- 0,1,1,0,
- 0,1,0,1};
- const Matrix One =(Matrix){
- 3,3,
- 0,0,0,0,
- 0,1,1,0,
- 0,0,1,0,
- 0,0,1,1};
- Matrix nd[N<<2],A;
- int tag[N<<2];
- char str[N];
-
- void build(int k,int l,int r)
- {
- tag[k]=0;
- if(l==r)
- {
- if(str[l]=='0')nd[k]=Zero;
- else nd[k]=One;
- return;
- }
- int mid=(l+r)>>1;
- build(k<<1,l,mid);
- build(k<<1|1,mid+1,r);
- nd[k]=nd[k<<1]*nd[k<<1|1];
- }
- void push_down(int k)
- {
- if(!tag[k])return;
- tag[k<<1]^=1,nd[k<<1].flip();
- tag[k<<1|1]^=1,nd[k<<1|1].flip();
- tag[k]=0;
- }
- void update(int k,int L,int R,int l,int r)
- {
- if(L<=l&&r<=R)
- {
- tag[k]^=1,nd[k].flip();
- return;
- }
- push_down(k);
- int mid=(l+r)>>1;
- if(L<=mid)update(k<<1,L,R,l,mid);
- if(R>mid)update(k<<1|1,L,R,mid+1,r);
- nd[k]=nd[k<<1]*nd[k<<1|1];
- }
- Matrix query(int k,int L,int R,int l,int r)
- {
- if(L<=l&&r<=R)return nd[k];
- push_down(k);
- int mid=(l+r)>>1;
- if(R<=mid)return query(k<<1,L,R,l,mid);
- else if(L>mid)return query(k<<1|1,L,R,mid+1,r);
- else return query(k<<1,L,R,l,mid)*query(k<<1|1,L,R,mid+1,r);
- }
-
- int main()
- {
- A.resize(1,3);
- A[1][1]=0,A[1][2]=0,A[1][3]=1;
- int T,n,Q;
- scanf("%d",&T);
- while(T--)
- {
- scanf("%d%d",&n,&Q);
- scanf("%s",str+1);
- build(1,1,n);
- int op,x,y;
- while(Q--)
- {
- scanf("%d%d%d",&op,&x,&y);
- if(op==1)update(1,x,y,1,n);
- else
- {
- Matrix res=A*query(1,x,y,1,n);
- printf("%d\n",(res[1][1]+res[1][2])%P);
- }
- }
- }
- return 0;
- }