算法 数位DP(按位DP) hdoj 2089 hdoj 3555 uestc 1307 基础题

按位dp:对于当前长度i是枚举该为的值(0~10),统计出区间内合法的数;

下面是基础入门的3题;

hdoj 2089 http://acm.hdu.edu.cn/showproblem.php?pid=2089 区间数内不包含4和62的数的个数

 

View Code
 1  #include <iostream>
 2  #include <cstdio>
 3  #include <cstring>
 4  #include <algorithm>
 5  using namespace std;
 6 
 7 
 8  int num[10][10];
 9 
10  // 预处理长度为i,取值为j时的合法元素个数;
11  void Pre(){
12      memset(num, 0, sizeof num);
13      for ( int i=0; i<10; ++i )
14         num[1][i] = 1;
15      num[1][4] = 0;
16      for ( int i=2; i<9; ++i )
17      {
18          for ( int j=0; j<10; ++j ) if(j ^ 4)
19            for ( int k=0; k<10; ++k ) if(k ^ 4)
20            {
21                if(j==6 && k==2) continue; // 剔出非法的元素
22                num[i][j] += num[i-1][k];
23            }
24      }
25  };
26 
27  int count( int n ) {
28       if(n <= 0) return 1;
29       int a[12] = {0};
30       while(n ) {
31           a[++a[0] ] = n%10; n /= 10;
32       }
33       int ret = 0, last=-1;
34       while(a[0] > 0) {
35            int t = a[a[0] ];
36            for ( int i=0; i<t; ++i ) {
37                if(i == 4) continue;
38                if(last==6 && i==2) continue;
39                ret += num[a[0] ][i];
40            }
41            if(t^4 && a[0]==1 && !(last==6&&t==2)) ret += num[1][t];
42           // 要考虑是否可以取最后一位
43            if(t == 4)  break; // 后面的数据都是非法的
44            if(last==6 && t==2) break; // 后面的数都是非法的
45            last = t;
46            --a[0];
47       }
48       //cout<<"  " << ret << endl;
49       return ret;
50  }
51 
52  int main(){
53      Pre(); int L, R;
54      while( ~scanf("%d%d", &L, &R), L||R ) {
55            if(L > R) swap(L, R);
56            int l = count(L-1);
57            int r = count(R);
58            printf("%d\n", r-l);
59      }
60  };

 

hdoj http://acm.hdu.edu.cn/showproblem.php?pid=3555 统计区间出现字串49的个数

View Code
 1 #include <iostream>
 2  #include <cstring>
 3  #include <cstdio>
 4  #include <algorithm>
 5  using namespace std;
 6 
 7  typedef __int64 ll;
 8 
 9  ll dp[30][10][2];
10  // dp[i][j][0] 表示长度为i取值为j的不合法的元素个数;
11  // dp[i][j][1] 表示长度为i取值为j的合法元素个数
12 
13  void Pre(){
14      memset(dp, 0, sizeof dp);
15      for ( int i=0; i<10; ++i ){
16          dp[1][i][0] = 1;
17      }
18      for ( int i=2; i<30; ++i )
19      {
20          for ( int j=0; j<10; ++j )
21          for ( int k=0; k<10; ++k ){
22               if(!(j==4 && k==9) )
23                dp[i][j][0] += dp[i-1][k][0];
24               dp[i][j][1] += dp[i-1][k][1];
25               if(k == 9 && j == 4)
26                 dp[i][j][1] += dp[i-1][k][0];
27          }
28      }
29      //for ( int i=0; i<10; ++i )
30      // cout << dp[4][i][1] <<" "; puts("");
31  };
32 
33  // 这里也要注意数据类型
34  ll get(int *a, int l, int r){
35     ll ret = 0;
36     for(int i=l; i>=r; --i)
37      ret = ret*10+a[i];
38     return ret;
39  }
40 
41  void count( ll n ){
42      if(n < 49){
43          puts("0");  return ;
44      }
45      int a[30]={0};
46      while(n ) {
47          a[++a[0] ] = n%10; n /= 10;
48      }
49      ll ret = 0;
50      int last = -1;
51      while(a[0] > 1) {
52          int t = a[a[0] ];
53          for ( int i=0; i<t; ++i )
54            ret += dp[a[0] ][i][1];
55          if(last==4 && t==9) { // 后面的数都是合法的,直接加上就可以了
56               ret += get(a, a[0]-1, 1)+1;
57               break;
58          }
59          if(a[0]==2 && a[a[0] ]==4 && a[a[0]-1 ]==9 ) ret++;
60         // 考虑最后一位是否可取
61          last = t;
62          --a[0];
63      }
64      printf("%I64d\n", ret);
65  };
66 
67  int main(){
68      Pre();
69      int T; ll n;  scanf("%d", &T);
70      while( T-- ) {
71          scanf("%I64d", &n);
72          count(n);
73      }
74  }

 

uestc http://acm.uestc.edu.cn/problem.php?pid=1307 统计区间内符合相邻数字差大于1的数;

View Code
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 
 7 typedef long long ll;
 8 
 9 ll dp[15][12];
10 bool ok(int x, int y){
11     return abs(x-y)>1;
12 }
13 
14 void Pre(){
15     memset(dp, 0, sizeof dp);
16     for ( int i=0; i<10; ++i )
17        dp[1][i] = 1;
18     for ( int i=2; i<12; ++i ){
19         for ( int j=0; j<10; ++j )
20         {
21             for ( int k=0; k<10; ++k )if(ok(j, k) ) {
22                 dp[i][j] += dp[i-1][k];
23             }
24         }
25     }
26    /* for(int j=1; j<=3; puts(""), ++j )
27     for ( int i=0; i<10; ++i )
28       cout << dp[j][i] << " ";*/
29 }
30 
31 ll count( ll x ) {
32      int a[14]={0};
33      while( x ) {
34          a[++a[0] ] = x%10; x /= 10;
35      }
36      ll ret = 0;
37      for ( int i=1; i<a[0]; ++i )
38         for ( int j=1; j<10; ++j )
39           ret += dp[i][j];
40      int last = 20;
41      while(a[0] > 0 ) {
42          int t = a[a[0] ];
43          for ( int i=(last==20?1:0); i<t; ++i )
44            if(ok(i, last) ) ret += dp[a[0] ][i];
45          //if(a[0]==1 && ok(t, last) ) ret += dp[1][t];
46         // 这个不要啊,前导0会枚举到这个情况,开始就因为这里得不到正确结果的
47          if(!ok(t, last) ) break;
48          last = t;
49          --a[0];
50      }
51     // cout << " " << ret << endl;
52      return ret;
53 };
54 
55 int main(){
56     Pre();
57     ll L, R;
58     while( ~scanf("%lld%lld", &L, &R) ){
59         ll l = count(L);
60         ll r = count(R+1);
61         printf("%lld\n", r-l);
62     }
63 };

 

以上都是些基础题,还有很多这样的题;

fzu 2070   http://acm.fzu.edu.cn/problem.php?pid=2070

zoj 2599 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2599

zoj 3162 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3162

zoj 3494 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3494

codeforces 55D http://www.codeforces.com/problemset/problem/55/D

codeforces 215E http://www.codeforces.com/problemset/problem/215/E

codeforces 258B http://www.codeforces.com/problemset/problem/258/B

。。。。。

转载于:https://www.cnblogs.com/TengXunGuanFangBlog/archive/2013/04/19/digit_DP.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值