probabilistic robotics_Kalman filter(一)

码农生活告一段落,继续。。。。

多元正态分布

 

 

协方差矩阵,为正定对称矩阵。det表示行列式

协方差反应随机样本变量各分量之间的相关性。

当变量的假设模型不一致时,不适合用高斯滤波。

叠加高斯噪声的线性假设

 

联立1,2式可得状态转移概率

测量值

 

 

卡尔曼滤波

 

初始置信度

 

1、 其中贝叶斯滤波中的后验概率bel(x)由均值和协方差表示。整个算法流程就是在对二者不停的做迭代计算。

2、 可以看出增益系数K由前验概率中的协方差以及测量系数、测量误差这三者来决定。

3、 均值的更新需要用的测量值zt,协方差的更新只与上次协方差以及本次增益系数有关。

推导过程太繁复,略过不看了。

扩展卡尔曼滤波

3.23.5

 

由如下两式代替

1、状态转移函数以及测量概率函数由原来的线性假设变为了非线性假设,但误差还是符合正态分布。

2、但是整体的后验概率将不符合高斯分布(正态分布),用原来的贝叶斯滤波将不会有闭环解(closed-form solution),所以扩展卡尔曼滤波只能计算近似解。

3、扩展卡尔曼滤波通过对函数的泰勒展开来逼近线性函数。

 

泰勒展开

偏导公式:

 

 

在上一次的均值处对做泰勒展开有:

 

 

 

 

算法描述

 

 

对比KF,可以发现原来的ABCGH代替。

实际考虑

1、多模型考虑。有时候,会用到多个模型对状态进行估计,这些模型没有相互冲突。此时可采用对模型加权的方式进行处理。称为多假设(扩展)卡尔曼滤波(Multi-Hypthesis (Extended) Kalman Filter,MHEKF),其中的加权系数为似然估计。

2、局部非线性化,局部线性化程度高,泰勒展开越逼近真实结果,滤波效果越好。

3、不确定性(方差),当状态的不确定性(方差)很大时,经过非线性函数的变换,结果容易扩散,得到的概率密度函数更加扭曲。

4、比之泰勒展开更加高级的另两种方式,一种是无迹卡尔曼滤波(Unscented KF,UKF,它通过使用加权统计线性回归过程实现随机线性化(机器学习);另一种是矩匹配(moments mathching,它仅通过对后验分布的真实均值与方差来计算。

 下一步将用matlab进行模拟。

 

转载于:https://www.cnblogs.com/phldylj/p/7543833.html

### 扩展卡尔曼滤波器的电子资源 对于希望深入了解扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的研究者或工程师而言,获取高质量的学习材料至关重要。EKF是种用于非线性系统的状态估计方法,在机器人导航、自动驾驶等领域有着广泛应用。 #### 推荐书籍和PDF文档: 1. **《Kalman Filtering: Theory and Practice Using MATLAB》** 这本书籍由Mohinder S.Grewal 和 Angus P.Andrews合著,提供了关于经典以及扩展卡尔曼滤波理论和技术实现方面的详尽介绍[^1]。书中不仅涵盖了基础概念还涉及到了高级主题如自适应调整噪声协方差矩阵等内容[^4]。 2. **《Probabilistic Robotics》** Sebastian Thrun等人编写的这本书专注于概率论框架下的移动机器人算法设计,其中包含了大量有关于EKF应用于SLAM(Simultaneous Localization And Mapping)中的实例分析[^3]。 3. **学术论文技术报告** 可以访问Google Scholar等平台搜索关键词 "Extended Kalman Filter implementation" 或者浏览IEEE Xplore Digital Library查找最新的研究成果。例如,《A Generalized Extended Kalman Filter Implementation for the Robot Operating System》这篇文献就讨论了个通用化的ROS环境下的EKF实现方案。 4. **在线课程资料** 许多大学提供免费开放式的机器学习/控制工程类课程网站上可以找到相关讲义PPT及视频教程链接。Coursera、edX平台上也有专门针对传感器融合及其应用开设的专业化培训项目可供选择。 为了更方便地定位到具体的ebook或pdf文件,建议利用搜索引擎时加上特定格式限定符,比如 `filetype:pdf` 来过滤结果只显示PDF版本;或者前往专业的电子书库如SpringerLink、Elsevier ScienceDirect下载官方出版物。 ```bash # 使用Google搜索带有PDF格式限定符的例子 extended kalman filter filetype:pdf site:.edu ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值