- 博客(1099)
- 资源 (6)
- 收藏
- 关注
原创 基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
摘要: QSMODE是一种融合差分进化与Q学习的混合算法,用于自动驾驶路径规划。其核心创新在于将强化学习从参数调节升级为路径生成器,通过双模式更新机制(探索模式随机动作、利用模式优化路径)动态调整Q表。算法将路径规划建模为马尔可夫决策过程,结合三次样条插值确保路径平滑性,并通过自适应概率平衡探索与利用。实验表明,QSMODE在复杂环境中能生成安全、平滑且最优的路径,其性能优于传统进化算法。
2026-02-08 20:47:25
601
原创 基于强化学习的新型三次样条多算子差分进化算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
摘要:QSMODE是一种2025年提出的新型路径规划算法,融合强化学习与多算子差分进化技术,专为自动驾驶等场景设计。其创新点在于将Q-learning与三次样条插值深度集成,解决了传统算法路径尖锐、缺乏学习能力的问题。算法通过Q-table积累搜索经验,采用多算子差分进化平衡探索与利用,并结合三次样条插值确保路径平滑性。实验表明,QSMODE在复杂环境中能生成安全、高效且符合车辆运动学约束的最优路径,具有卓越的适应性和稳定性。该算法为自动驾驶路径规划提供了新的解决方案。
2026-02-08 20:25:00
556
原创 七种智能优化算法(GRO、NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
本文介绍了23个用于测试智能优化算法性能的基准函数(F1-F23),并提供了MATLAB代码实现。通过7种算法(GRO、NOA、MA、PSO、GA、ZOA、SWO)在种群规模100、最大迭代次数100的条件下进行测试,展示了各算法在F10函数上的求解结果,包括最佳得分、最佳位置和收敛曲线。实验结果通过多张图表呈现,为不同优化算法的性能比较提供了直观参考。该研究基于Yao等人提出的进化计算框架,为算法评估提供了标准化测试方案。
2026-01-24 23:07:21
289
原创 六种智能优化算法(NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
本文介绍了23个CEC测试函数在智能优化算法性能测试中的应用,通过MATLAB代码实现了6种算法(NOA、MA、PSO、GA、ZOA、SWO)的对比实验。实验采用100个搜索代理和100次迭代,对F10函数进行测试,记录了各算法的最佳得分和位置,并展示了收敛曲线图。研究为评估不同优化算法的全局和局部搜索能力提供了基准测试方法。
2026-01-24 22:59:50
278
原创 三维动态避障路径规划:山羊优化算法(Goat Optimization Algorithm, GOA)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码
摘要:针对无人机在三维动态环境下的路径规划问题,本文提出一种山羊优化算法(GOA)与动态窗口法(DWA)的混合方法。该算法首先利用GOA进行全局路径离线规划,再结合DWA进行局部动态避障在线优化,通过速度窗口筛选保证实时性和安全性。仿真实验表明,该混合算法在动态障碍物场景下具有更优的路径长度、避障成功率和实时响应速度,有效解决了传统方法实时性差、避障精度低等问题,满足无人机三维动态路径规划需求。
2025-12-28 11:35:52
1161
原创 三维动态避障路径规划:基于山羊优化算法(Goat Optimization Algorithm, GOA)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码
针对无人机三维动态路径规划问题,本文提出一种山羊优化算法(GOA)与动态窗口法(DWA)的混合方法。首先利用GOA进行全局路径离线规划,再结合DWA进行局部动态避障在线优化,通过速度窗口筛选确保路径实时性和安全性。仿真结果表明,该混合算法在动态障碍物场景下具有更优的路径长度、避障成功率和实时响应速度,有效解决了传统方法实时性差、避障精度低等问题,满足无人机在复杂三维环境中的路径规划需求。
2025-12-28 11:30:03
1127
原创 三维动态避障路径规划:基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码
本文针对无人机三维动态路径规划问题,提出一种部落竞争与成员合作算法(CTCM)与动态窗口法(DWA)相结合的混合方法。通过CTCM算法进行全局路径规划,再利用DWA方法实现局部动态避障优化,结合无人机运动学约束筛选速度窗口。仿真实验表明,该混合算法在动态障碍物环境下具有更优的路径长度(缩短15%)、更高的避障成功率(提升22%)和更快的实时响应速度(提高30%),有效解决了传统方法实时性差、避障精度低等问题,满足无人机在复杂三维环境中的路径规划需求。
2025-12-27 11:29:23
1406
原创 三维动态避障路径规划:基于融合DWA的部落竞争与成员合作算法(CTCM)求解无人机三维动态避障路径规划研究,MATLAB代码
本文针对无人机三维动态路径规划问题,提出一种CTCM-DWA混合算法。该方法结合部落竞争与成员合作算法(CTCM)进行全局路径规划,并采用动态窗口法(DWA)实现局部动态避障。通过无人机运动学约束筛选速度窗口,确保路径实时性和安全性。三维仿真实验表明,该混合算法在动态障碍物场景下具有更优的路径长度、避障成功率和实时响应性能,有效解决了传统方法实时性差、避障精度低等问题,满足无人机在复杂动态环境下的路径规划需求。
2025-12-27 11:10:15
1161
原创 基于动态窗口法DWA的多无人机动态自主避障航迹规划,MATLAB代码
本文研究了基于动态窗口法(DWA)的无人机避障航迹规划方法。首先建立了无人机二维运动学模型,推导了质心位置与速度的关系式。然后详细阐述了DWA算法原理:通过加速度约束和物理极限构建动态速度窗口,离散化速度空间后预测轨迹,结合碰撞检测筛选安全路径。目标函数综合考虑航向偏差、障碍距离和飞行速度三个评价指标,经归一化处理后选择最优速度控制量。MATLAB仿真结果表明,该方法能有效规划无人机避障路径。研究为无人机自主导航提供了实用的运动规划解决方案。
2025-12-22 20:07:09
1226
原创 基于DWA的多智能体动态避障路径规划算法研究,MATLAB代码
DWA算法是一种高效的局部路径规划方法,适用于机器人动态避障场景。其核心思想是在速度空间采样候选速度,通过评价函数选择最优轨迹。算法考虑动力学约束、避障约束和目标导向,实现实时路径优化。在多智能体系统中,DWA需解决冲突检测、协同规划等问题,可通过优先级机制、速度协调和全局信息引导进行优化。该算法广泛应用于仓储机器人、无人机集群和自动驾驶等领域。未来研究方向包括强化学习权重自适应、高精度轨迹预测和异构智能体协同等。DWA算法通过实时感知动态障碍物,能有效实现复杂环境下的自主避障。
2025-12-22 19:47:51
1779
原创 基于动态环境下多智能体自主避障路径优化的DWA算法研究,MATLAB代码
DWA(动态窗口法)是一种用于机器人动态避障的局部路径规划算法。其核心原理包括速度采样、轨迹预测和轨迹评价三个步骤:首先在速度空间生成候选速度组合,然后模拟各速度下的运动轨迹,最后通过评价函数(方向、距离、速度)选择最优轨迹。该算法能实时响应动态障碍物,广泛应用于无人机等移动机器人避障场景。研究表明,改进的DWA算法可有效提升动态环境下的路径规划性能。
2025-12-21 22:56:58
418
原创 基于DWA的动态环境下多智能体自主避障路径优化,MATLAB代码
DWA(动态窗口法)是一种高效的局部路径规划算法,通过速度空间采样、轨迹预测和评价函数选择最优速度组合,实现机器人实时避障。其核心步骤包括:在动态窗口内生成候选速度,模拟未来轨迹,并基于方向、距离和速度三个指标进行评分。该算法适用于动态环境,能根据障碍物运动状态实时调整路径。研究表明,DWA算法在无人机避障等领域具有良好应用效果,通过优化评价函数可进一步提升其性能。
2025-12-21 22:47:03
439
原创 融合DWA的青蒿素优化算法(Artemisinin Optimization Algorithm, AOA)求解无人机三维动态避障路径规划,MATLAB代码
针对无人机三维动态路径规划问题,本文提出一种青蒿素优化算法(AOA)与动态窗口法(DWA)混合的解决方案。该方法首先利用AOA进行全局离线路径规划,再结合DWA实现局部动态避障的在线优化,通过速度窗口筛选保证路径实时性和安全性。仿真实验表明,该混合算法在路径长度、避障成功率和实时响应速度方面均优于传统方法,有效解决了动态环境下路径规划的实时性差、精度低和平滑性不足等问题,满足无人机在复杂三维环境中的自主导航需求。
2025-12-21 12:09:45
1469
原创 基于粒子群算法PSO融合动态窗口法DWA的无人机三维动态避障路径规划研究,MATLAB代码
本文针对无人机在三维动态环境下的路径规划问题,提出一种PSO-DWA混合算法。该方法首先利用改进粒子群算法生成全局最优路径,再结合动态窗口法进行实时局部避障优化。通过MATLAB仿真验证,该混合算法在路径长度、避障成功率和实时性方面均优于传统方法,有效解决了动态障碍物场景下的路径规划难题。实验结果表明,该方法能够同时满足全局最优性、局部实时性和运动安全性要求,为无人机在复杂环境下的自主导航提供了有效解决方案。
2025-12-19 21:59:25
1126
原创 基于粒子群算法与动态窗口混合的无人机三维动态避障路径规划研究,MATLAB代码
本文提出了一种PSO-DWA混合算法来解决无人机在三维动态环境下的路径规划问题。该算法首先利用改进的粒子群算法进行全局路径规划,生成避开静态障碍物的最优路径;然后结合动态窗口法进行局部动态避障,通过速度窗口采样和轨迹评价实现实时避障。仿真实验表明,混合算法在路径长度、避障成功率和实时性等方面优于单一算法,有效解决了传统方法存在的实时性差、避障精度低等问题。MATLAB仿真验证了算法在三维动态环境中的有效性,为无人机自主导航提供了新的技术方案。
2025-12-19 21:37:39
1385
原创 基于复杂山地环境下无人机自主动态避障的三维路径规划研究,MATLAB代码
摘要:针对复杂山地环境下无人机作业面临的路径规划难题,本文聚焦西南喀斯特地貌区域,研究三维环境中的自主动态避障技术。传统方法存在地形适应性差、避障滞后等问题,制约作业效率与飞行安全。通过改进连续蚁群优化算法,提出新型路径规划方案,提升无人机在陡峭地形、动态障碍场景下的适应能力。研究对拓展无人机在电力巡检、应急救援等领域的应用具有重要理论与工程价值。(149字)
2025-12-06 14:19:35
439
原创 基于DWA的动态环境下无人机自主避障路径优化,MATLAB代码
DWA(动态窗口法)是一种实时局部路径规划算法,主要用于机器人动态避障。其核心原理包括三个步骤:首先在速度空间采样生成候选速度组合;然后预测各速度下的运动轨迹;最后通过评价函数(考虑方向偏差、障碍距离和运动速度)选择最优轨迹。该算法能有效应对动态环境,实时调整路径避开移动障碍物。文中还展示了无人机动态避障的动画演示和效果图示,验证了算法的实用性。
2025-12-03 22:14:51
296
原创 基于城市场景下RRT、ACO、A*算法的无人机三维路径规划方法研究,MATLAB代码
本文研究了三种无人机路径规划算法在三维环境中的应用。RRT算法通过随机采样构建搜索树并优化路径,适用于复杂环境;A算法结合启发式函数高效寻找最短路径,但对动态环境适应性有限;蚁群算法模拟蚂蚁觅食行为,通过信息素更新路径,适合复杂障碍物环境但响应速度较慢。研究采用MATLAB进行算法实现,构建三维地图并设定起点终点,通过比较路径直线距离和算法性能评估各方法的适用性,为无人机路径规划提供优化思路。
2025-11-18 21:28:28
468
原创 多目标加权平均算法(Multi-objective Weighted Average Algorithm, MOWAA)求解多无人机路径规划,MATLAB代码
本文介绍了加权平均算法(WAA)及其多目标扩展(MOWAA)在无人机路径规划中的应用。WAA是一种新型元启发式优化算法,通过加权平均位置平衡全局搜索与局部开发,提高搜索效率。MOWAA则融合竞争学习与高斯扰动,解决多目标优化问题。针对无人机路径规划,建立了包含路径长度、威胁成本、飞行高度等多个目标函数的优化模型,并给出MATLAB实现代码。实验结果表明,该算法能有效求解多无人机路径规划问题。完整代码可通过文末联系方式获取。
2025-11-17 22:25:14
729
原创 导航变量的多目标粒子群优化算法(NMOPSO)求解复杂城市场景下无人机三维路径规划,MATLAB代码
摘要:NMOPSO是一种基于导航变量的多目标粒子群优化算法,专为无人机三维路径规划设计。该算法将路径规划建模为多目标优化问题,考虑路径长度、避碰、飞行高度和平滑度四个目标函数,同时满足无人机运动学约束。通过粒子群优化框架生成帕累托最优解集,并引入导航变量表示路径,结合变异机制增强搜索能力。实验结果表明,NMOPSO能有效规划出满足多种优化目标的可行路径。该算法为复杂环境下的无人机路径规划提供了新的解决方案。
2025-10-13 20:22:40
780
原创 基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码
摘要:本文介绍了一种基于导航变量的多目标粒子群优化算法(NMOPSO),用于无人机三维路径规划。该算法通过建立包含路径长度、避碰、飞行高度和平滑度的多目标优化模型,利用改进的PSO算法搜索帕累托最优解集。算法采用导航变量表示路径,结合超网格机制和变异策略,有效处理无人机运动学约束。仿真结果表明,NMOPSO能生成满足不同需求的最优路径,为解决复杂环境下的无人机路径规划问题提供了有效方法。附有MATLAB代码实现。(149字)
2025-10-13 19:40:38
851
原创 原创:4种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),提供完整MATLAB代码
本文介绍了5种新型多目标优化算法(MOPGA、MOWAA、MOPKO、MOEGO、IMOCTCM)及其在无人机路径规划中的应用。建立了包含路径成本、威胁成本、飞行高度成本和平滑成本的多目标优化模型,通过MATLAB实现了三维路径可视化。结果表明,这些算法能有效规划无人机路径,平衡路径长度与安全约束。研究为复杂环境下的无人机导航提供了新的优化方法。
2025-10-12 19:48:55
1559
原创 原创:5种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),提供完整MATLAB代码
本文介绍了5种新型多目标优化算法及其在无人机路径规划中的应用。这些算法包括MOPGA、MOWAA、MOPKO、MOEGO和IMOCTCM。文章详细构建了多目标无人机路径规划模型,包含路径成本(最小化路径长度)、约束成本(威胁成本、飞行高度成本和平滑成本)等关键指标。其中,威胁成本考虑了障碍物规避,飞行高度成本确保无人机在限定高度范围内飞行,平滑成本评估转弯和爬升率以生成可行路径。目标函数综合了多个无人机的路径成本和约束成本。最后,文章展示了MATLAB代码实现的部分结果,包括3D路径可视化效果,验证了所提模
2025-10-12 19:05:18
1210
原创 高维多目标优化算法应用(五):基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
摘要:NMOPSO是一种2025年提出的无人机路径规划算法,通过引入导航变量和粒子群优化技术,在满足运动学约束的同时优化多个目标函数。该算法将路径规划建模为多目标优化问题,考虑路径长度、避碰、飞行高度和平滑度四个目标,并采用变异机制和领导者选择策略生成帕累托最优解集。实验结果表明,NMOPSO能有效平衡各目标间的冲突,为无人机提供安全可行的飞行路径。
2025-10-12 09:34:32
1079
原创 高维多目标优化算法应用(四):基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
NMOPSO是一种新型多目标粒子群优化算法,专为无人机路径规划设计。该算法通过引入导航变量表示路径,有效处理无人机运动学约束,将路径规划建模为最小化路径长度、避碰、飞行高度和平滑度的多目标优化问题。算法采用超网格机制选择领导者,结合变异机制增强搜索能力,最终输出帕累托最优路径集。实验结果表明,NMOPSO能有效平衡各优化目标,生成满足约束的可行路径。部分结果显示最优解的路径长度指标为0.300,避碰指标为0,验证了算法的有效性。
2025-10-12 09:30:51
644
原创 高维多目标优化算法应用(三):基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
本文提出了一种基于导航变量的多目标粒子群优化算法(NMOPSO),用于解决无人机路径规划问题。该算法通过将路径规划建模为多目标优化问题,考虑路径长度、避障、飞行高度和平滑度四个目标函数,并引入导航变量表示无人机路径。NMOPSO算法通过初始化粒子群、迭代更新领导者选择机制和变异机制,最终生成满足运动学约束的帕累托最优路径。实验结果表明,该方法能有效平衡多个优化目标,为无人机提供安全、高效的飞行路径。
2025-09-15 21:54:16
1252
原创 高维多目标优化算法应用(二):基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
NMOPSO算法是一种用于无人机路径规划的多目标粒子群优化方法,通过引入导航变量来满足无人机的运动学约束。该算法将路径规划建模为多目标优化问题,考虑路径长度、避碰、飞行高度和平滑度四个目标函数,并采用粒子群优化技术寻找帕累托最优解。算法流程包括初始化、迭代更新和结果输出三个阶段,通过变异机制和超网格技术提高搜索效率。实验结果表明,NMOPSO能有效生成满足无人机运动学约束的优化路径,在不同目标之间取得平衡。
2025-09-15 21:49:45
785
原创 高维多目标优化算法应用(一):基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
NMOPSO算法是一种用于无人机路径规划的多目标粒子群优化方法。该算法通过引入导航变量表示路径,考虑无人机的运动学约束,优化四个目标函数:路径长度、避障能力、高度稳定性和路径平滑度。算法流程包括初始化粒子群、迭代更新位置和速度、变异机制以及非支配解集维护。实验结果表明,NMOPSO能有效生成满足无人机运动学约束的帕累托最优路径。该算法在路径长度、避障等方面表现出色,为无人机路径规划提供了新的解决方案。
2025-09-15 21:44:13
961
原创 高维超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)求解无人机三维路径规划,MATLAB代码
摘要:NMOPSO是一种新型无人机路径规划算法,通过将导航变量与多目标粒子群优化结合,有效处理路径长度(0.300)、避碰(0)、飞行高度(0.011)和路径平滑度(0.157)等相互冲突的优化目标。算法采用超网格机制选择领导者,引入区域变异策略增强搜索能力,最终输出满足无人机运动学约束的帕累托最优路径集。实验结果表明,该算法在三维复杂环境中能生成符合各项性能指标的最优飞行路径。
2025-09-15 21:20:47
1113
原创 高维超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
NMOPSO算法是一种用于无人机路径规划的多目标粒子群优化方法,通过引入导航变量来考虑无人机的运动学约束。该算法将路径规划建模为多目标优化问题,旨在同时最小化路径长度、避碰风险、飞行高度波动和路径不平滑度。算法流程包括初始化粒子群、迭代更新速度和位置、变异机制以及非支配解集维护,最终输出帕累托最优路径解集。仿真结果表明,NMOPSO能有效生成满足无人机运动约束的优化路径,在路径长度、避障性能和平滑度等目标间取得良好平衡。
2025-09-15 21:05:20
1140
原创 FJSP:基于非支配排序的青蒿素优化算法(NSAOA)求解多目标柔性作业车间调度问题(FJSP),MATLAB代码
柔性作业车间调度问题(Flexible Job Scheduling Problem, FJSP) 的描述如下:n个工件JJ2..Jn要在m台机器M1M2..Mm上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。
2025-09-01 21:43:59
495
原创 FJSP:基于非支配冬虫夏草优化算法 (NSCFO)求解多目标柔性作业车间调度问题(FJSP),MATLAB代码
柔性作业车间调度问题(Flexible Job Scheduling Problem, FJSP) 的描述如下:n个工件JJ2..Jn要在m台机器M1M2..Mm上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。
2025-09-01 19:52:51
1011
原创 FJSP:基于非支配吸血水蛭优化算法 (NSBSLO)求解多目标柔性作业车间调度问题(FJSP),MATLAB代码
柔性作业车间调度问题(Flexible Job Scheduling Problem, FJSP) 的描述如下:n个工件JJ2..Jn要在m台机器M1M2..Mm上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。
2025-09-01 18:33:28
1066
原创 基于非支配的黑翅鸢算法 ( Non-dominated Sorting Black-winged Kite Algorithm)求解多目标柔性作业车间调度问题(FJSP),MATLAB代码
黑翅鸢算法(Black-winged Kite Algorithm, BKA)是2024年提出的一种元启发式优化算法,其灵感来源于黑翅鸢的迁徙和捕食行为。这种算法通过模拟黑翅鸢在捕食过程中的飞行和搜索策略,被用来解决优化问题,尤其在寻找基准函数的全局最优解以及在工程领域中处理复杂系统的优化问题上展现出了其应用价值。
2025-08-31 22:39:13
1220
原创 FJSP:基于非支配的牛优化算法 (NSOX, Non-dominated Sorting Ox Optimizer)求解求解多目标柔性作业车间调度问题(FJSP),MATLAB代码
牛优化算法(Ox Optimizer,OX)由AhmadK.AlHwaitat与HussamN.Fakhouri于2024年提出。该算法的设计灵感来源于公牛的行为特性,公牛以其巨大的力量、灵活性、稳健性、适应性和协作能力而闻名。这些特点使得OX算法在优化过程中表现出强大的鲁棒性和适应性。
2025-08-31 11:17:15
1062
原创 LS-MDMTSP:梯度下降优化(Adam Gradient Descent Optimizer,AGDO)算法求解大规模多仓库多旅行商问题(LS-MDMTSP),MATLAB代码
大规模多仓库多旅行商问题(LS-MDMTSP)是经典旅行商问题的扩展,具有多仓库、多旅行商和客户节点分布广泛的特点,广泛应用于物流配送、连锁企业物资调配和分布式能源巡检等领域。该问题复杂度高,需考虑仓库选址、客户分配和路径优化等多重约束。常用求解方法包括改进的精确算法(如分支定价法)和启发式算法(如禁忌搜索、模拟退火和混合智能算法)。案例研究表明,优化方案可显著降低成本并提高效率。最新提出的梯度下降优化算法(AGDO)通过渐进梯度动量集成和动态梯度交互系统等机制,有效提升了求解质量和效率。实验验证表明,AG
2025-08-17 21:44:27
730
原创 LS-MDMTSP:向光生长算法(Phototropic growth algorithm,PGA)求解大规模多仓库多旅行商问题(LS-MDMTSP),MATLAB代码
大规模多仓库多旅行商问题(LS-MDMTSP)是经典旅行商问题的扩展,涉及多个仓库、多支旅行商队伍和大量客户节点,目标是优化整体运营成本。该问题具有仓库选址与分配复杂、规模庞大、多约束融合等特点,广泛应用于区域物流、连锁企业物资调配等领域。求解方法包括改进的精确算法和启发式算法(如禁忌搜索、模拟退火等)。案例显示,优化后可显著降低成本并提高效率。新提出的向光生长算法(PGA)通过模拟植物趋光性,为求解LS-MDMTSP提供了新思路。实验结果表明,PGA能有效规划路径,降低总路径长度,展现了良好的求解性能。
2025-08-17 21:25:22
614
原创 2025年最新原创多目标算法:多目标向光生长算法(MOPGA)求解MaF1-MaF15及工程应用---盘式制动器设计,提供完整MATLAB代码
摘要: 本文提出了一种新型多目标向光生长算法(MOPGA),灵感源于植物向光性生长机制,用于解决多目标优化问题。通过15个标准测试函数(MaF1-MaF15)和盘式制动器设计实例验证性能,采用GD、IGD、HV等6项指标综合评估算法的收敛性与多样性。实验结果表明,MOPGA在Pareto前沿逼近度(GD=0.0032)和解集分布性(HV=0.918)方面表现优异,代码实现显示该算法能有效平衡多目标冲突,适用于复杂工程优化场景。
2025-08-15 17:56:36
761
原创 2025年最新原创多目标算法:多目标向光生长算法(MOPGA)求解ZDT1-ZDT4,ZDT6及工程应用---盘式制动器设计,提供完整MATLAB代码
本文提出了一种多目标向光生长算法(MOPGA),该算法基于植物趋光生长的启发式原理,用于解决多目标优化问题。文章首先介绍了单目标向光生长算法(PGA)的基本原理,随后详细阐述了MOPGA的实现步骤,包括种群初始化、光照强度计算、生长方向调整等关键操作。为验证算法性能,研究采用ZDT系列测试函数和盘式制动器设计案例进行实验评估,并使用了GD、IGD、HV等6种性能指标全面分析算法的收敛性和多样性。实验结果表明,MOPGA在求解多目标优化问题时展现出良好的性能。文中还提供了算法的MATLAB实现代码框架和部分实
2025-08-15 17:37:41
971
原创 最新多目标优化算法应用:多目标向光生长算法(MOPGA)求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),提供完整MATLAB代码
本文提出了一种基于植物向光生长启发的新型多目标优化算法MOPGA,用于解决无人机路径规划问题。首先介绍了单目标向光生长算法(PGA)的基本原理,然后扩展为多目标版本MOPGA。针对无人机路径规划,建立了包含路径长度、威胁规避、飞行高度和平滑度四个目标的数学模型,并给出了各目标函数的具体计算方法。最后展示了算法的MATLAB实现结果,包括三维路径可视化效果图。该研究为复杂环境下的多无人机协同路径规划提供了新的解决方案。
2025-08-14 23:24:51
1141
1100种智能优化算法完整MATLAB及Python代码目录,里面包含代码下载链接
2025-12-28
SGEA(Steady-State and Generational Evolutionary Algorithm) 参考文献pdf
2025-06-11
贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)MATLAB代码
2025-02-16
基于肤色的RGB多人脸检测
2020-09-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅