自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

IT猿手

源代码欢迎添加博客下方的博主微信

  • 博客(206)
  • 资源 (6)
  • 收藏
  • 关注

原创 单目标应用:蜣螂优化算法DBO与麻雀搜索算法SSA求解无人机三维航迹规划(提供Matlab代码)

三维航迹规划是无人机在执行任务过程中的非常关键的环节,三维航迹规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。蜣螂优化算法DBO与麻雀搜索算法SSA求解无人机三维航迹规划。

2023-01-17 13:44:06 1491

原创 多目标优化算法:多目标鳟海鞘算法(Multi-objective Salp Swarm Algorithm ,MSSA)

多目标鳟海鞘算法(Multi-objective Salp Swarm Algorithm ,MSSA)由Seyedali Mirjalili等人于2017年提出.

2023-01-15 12:28:33 42

原创 多旅行商问题:世界杯优化算法(World Cup Optimization,WCO)求解多仓库多旅行商问题(提供Matlab代码)

世界杯优化算法(World Cup Optimization,WCO)由Navid Razmjooy等人于2016年提出,该算法模拟了国际足联世界杯比赛,思路新颖,收敛速度快,全局寻优能力强。

2022-12-18 22:54:45 313

原创 多旅行商问题:鹈鹕优化算法(Pelican Optimization Algorithm,POA)求解多仓库多旅行商问题(提供Matlab代码)

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。

2022-12-18 18:51:04 106

原创 单目标应用:白鲨优化算法WSO求解单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP)提供Matlab代码

白鲨优化算法(White Shark Optimizer,WSO)由Malik Braik等人于2022年提出,该算法受大白鲨导航和觅食时具有的非凡听觉和嗅觉启发。该算法思路新颖,策略高效。

2022-12-18 11:44:30 58

原创 多目标应用:基于非支配排序的瞪羚优化算法(Non-Dominated Sorting Gazelle Optimization Algorithm,NSGOA)求解多目标背包问题

多目标背包问题(Multi-objective Knapsack Problem,MOKP)是一种重要的组合优化问题,在生活的许多领域都有着十分广泛的应用。

2022-12-18 10:48:43 39

原创 多目标背包问题:MOJAYA求解多目标背包问题(Multi-objective Knapsack Problem,MOKP)提供Matlab代码

多目标背包问题(Multi-objective Knapsack Problem,MOKP)是一种重要的组合优化问题,在生活的许多领域都有着十分广泛的应用。

2022-12-17 10:45:10 294

原创 背包问题:蛇优化算法(Snake Optimizer,SO)求解背包问题(Knapsack Problem,KP)提供Matlab代码

0-1背包问题是组合约束优化中经典的NP-hard问题,一直以来都是学者研究的重点,传统算法求解此问题时,会随着问题规模的增加而算法所需时间成指数增长,而智能算法很好地解决了这一缺点,因而被广泛应用到求解背包问题中,例如:蛇优化算法。

2022-12-16 17:48:51 314

原创 背包问题:蜣螂优化算法(Dung beetle optimizer,DBO)求解背包问题(Knapsack Problem,KP)提供Matlab代码

0-1背包问题是组合约束优化中经典的NP-hard问题,一直以来都是学者研究的重点,传统算法求解此问题时,会随着问题规模的增加而算法所需时间成指数增长,而智能算法很好地解决了这一缺点,因而被广泛应用到求解背包问题中,例如:蜣螂优化算法。

2022-12-16 17:05:26 563

原创 单目标应用:蜣螂优化算法求解无人机三维航迹规划,含四种对比算法(提供Matlab代码)

三维航迹规划是无人机在执行任务过程中的非常关键的环节,三维航迹规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2022-12-11 18:11:13 1432

原创 多目标应用:多目标蜣螂优化算法求解多旅行商问题(Multiple Traveling Salesman Problem, MTSP)

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。

2022-12-11 11:08:30 234

原创 无人机三维航迹规划

三维航迹规划是无人机在执行任务过程中的非常关键的环节,三维航迹规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2022-12-10 16:56:26 700

原创 多目标优化算法:基于非支配排序的蜣螂优化算法(Non-Dominated Sorting Dung beetle optimizer,NSDBO)

基于非支配排序的蜣螂优化算法(Non-Dominated Dung beetle optimizer,NSDBO)由蜣螂优化算法与非支配排序策略结合而成。将NSDBO用于求解46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行评价。

2022-12-04 20:54:31 709

原创 CEC2015:动态多目标野狗优化算法求解CEC2015(提供完整MATLAB代码,含GD、IGD、HV和SP评价指标)

现实世界中,许多优化问题不仅具有多属性,而且与时间相关,即随着时间的变化,优化问题本身也发生改变,这类问题称为动态多目标优化问题(dynamic multi-objective optimization problems,DMOP)。

2022-12-04 14:59:41 604

原创 单目标应用:求解多旅行商问题(Multiple Traveling Salesman Problem, MTSP)的蜣螂优化算法(Dung beetle optimizer,DBO)

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市。

2022-12-02 11:10:36 193

原创 单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。CEC2017((2017 IEEE Conference on Evolutionary Computation))共有30个无约束测试函数分别是:单峰函数(F1-F3)、简单多峰函数(F4-F10)、混合函数(F11-F20)和组合函数(F21~F30)。测试维度包含:10D、30D、50D、100D。

2022-12-02 09:47:49 256 2

原创 单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。

2022-12-01 22:17:40 1384 6

原创 多目标优化算法:多目标非洲秃鹫优化算法(Multi-objective Africans Vultures Optimization Algorithm,MOAVOA)提供MATLAB代码及参考文献

多目标非洲秃鹫优化算法(Multi-objective Africans Vultures Optimization Algorithm,MOAVOA)由Nima Khodadadi等人于2022年提出,该算法思路新颖,求解高效。

2022-11-27 11:48:06 204

原创 单目标应用:最有价值球员算法(Most Valuable Player Algorithm,MVPA)求解旅行商问题TSP

最有价值球员算法(Most Valuable Player Algorithm,MVPA)由Bouchekara 等人于2017年提出,该算法受到体育比赛的启发,球员们为了赢得冠军而组成队伍进行队伍竞争,他们也为了赢得最有价值球员( most valuable player,MVP) 奖杯进行独立竞争。在最有价值球员算法中,每个球员代表一个潜在的解,通过球员竞争和队伍竞争来不断提高球员的能力,最终产生一个 MVP,而 MVP 对应问题的最优解。

2022-11-25 16:59:12 200

原创 单目标应用:足球联赛竞争算法(Soccer league competition algorithm,SLC)求解多仓库多旅行商问题MD-MTSP(可更改旅行商个数及起点)

多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次。

2022-11-23 20:29:14 144

原创 单目标应用:世界杯优化算法(World Cup Optimization,WCO)求解单仓库多旅行商问题SD-MTSP(可更改旅行商个数及起点)

世界杯算法(World Cup Optimization,WCO)由Navid Razmjooy等人于2016年提出,该算法模拟了国际足联世界杯比赛,思路新颖,收敛速度快,全局寻优能力强。

2022-11-23 10:06:03 636

原创 单目标应用:求解多仓库多旅行商问题(Multi-Depot Multiple Travelling Salesman Problem, MD-MTSP)的人工兔优化算法ARO(提供MATLAB代码)

多仓库多旅行商问题(Multi-Depot Multiple Travelling Salesman Problem, MD-MTSP):𝑚个推销员从𝑚座不同的城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后回到各自出发的城市,这种问题模型被称之为MD-MTSP。

2022-11-21 19:57:21 88

原创 单目标应用:求解单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP)的人工兔优化算法ARO

单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。

2022-11-21 19:52:32 126

原创 单目标应用:人工兔优化算法(Artificial Rabbits Optimization ,ARO)求解旅行商问题TSP(提供MATLAB代码)

人工兔优化算法(Artificial Rabbits Optimization ,ARO)由Liying Wang等人于2022年提出,该算法模拟了兔子的生存策略,包括绕道觅食和随机躲藏,并通过能量收缩在两种策略之间转换。绕道觅食策略迫使兔子吃其他兔子巢附近的草,这可以防止它的巢穴被捕食者发现。随机隐藏策略使兔子能够从自己的洞穴中随机选择一个洞穴进行隐藏,这可以减少被敌人捕获的可能性。此外,兔子的能量收缩将导致从绕道觅食策略过渡到随机隐藏策略。

2022-11-21 19:45:10 498

原创 多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。

2022-11-20 21:43:17 628

原创 单目标应用:求解旅行商问题(TSP)的猎豹优化算法(The Cheetah Optimizer,CO)提供MATLAB代码

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。

2022-11-16 22:30:39 456

原创 单目标应用:瞪羚优化算法GOA求解旅行商问题TSP(提供Matlab代码)

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。

2022-11-16 09:39:58 101

原创 单目标应用:瞪羚优化算法(Gazelle Optimization Algorithm,GOA)优化BiLSTM权值和阈值(提供Matlab代码)

瞪羚优化算法(Gazelle Optimization Algorithm,GOA)由Agushaka等人于2022年提出,该算法模拟了瞪羚逃避捕食者的行为,思路新颖,性能高效。双向长短时记忆BiLSTM传统的权值和阈值更新方式采用梯度下降,由于梯度下降法容易使参数陷入局部最优。

2022-11-14 17:30:07 101

原创 单目标优化:山瞪羚优化算法(Mountain Gazelle Optimizer,MGO)求解CEC2017(提供Matlab代码)

山瞪羚优化算法(Mountain Gazelle Optimizer,MGO)由BenyaminAbdollahzadeh等人于2022年提出,该算法模拟山瞪羚的社会生活和等级制度,思路新颖,性能高效。

2022-11-14 14:54:41 1418

原创 多目标应用:非支配排序的鲸鱼优化算法NSWOA优化RBF神经网络实现数据预测(RBF隐藏层神经元个数可以自行设定)

非支配排序的鲸鱼优化算法(Non-Dominated Sorting Whale Optimization Algorithm,NSWOA)由Pradeep Jangir和 Narottam Jangir于2017年提出。

2022-11-10 17:17:38 562

原创 单目标应用:萤火虫算法(Firefly Algorithm,FA)优化RBF神经网络实现数据预测(RBF隐藏层神经元个数可以自行设定)

萤火虫算法(Firefly Algorithm,FA)是Yang等人于2009年提出的一种仿生优化算法。

2022-11-10 16:32:17 293

原创 CEC2015:(三)动态多目标野狗优化算法DMODOA求解dMOP3、 HE2、HE7、HE9(提供Matlab代码)

动态多目标野狗优化算法(Dynamic Multi-objective Dingo Optimization Algorithm,DMODOA)

2022-11-09 19:09:58 181

原创 CEC2015:(二)动态多目标野狗优化算法DMODOA求解DIMP2、dMOP2、dMOP2iso、dMOP2dec(提供Matlab代码)

动态多目标野狗优化算法(Dynamic Multi-objective Dingo Optimization Algorithm,DMODOA)

2022-11-09 18:49:12 273

原创 CEC2015:(一)动态多目标野狗优化算法(Dynamic Multi-objective Dingo Optimization Algorithm,DMODOA)求解FDA4与FDA5

野狗优化算法(Dingo Optimization Algorithm,DOA)由Peraza-Vázquez等人于2021年模仿澳大利亚野狗的社会行为。该算法的灵感来自野狗的狩猎策略,这些策略包括迫害攻击,分组策略和拾荒行为。为了提高该方法的整体效率和性能,DOA中制定了四条规则的三种检索策略

2022-11-09 14:53:14 100

原创 多目标优化算法:非支配排序的鲸鱼优化算法(Non-Dominated Sorting Whale Optimization Algorithm,NSWOA)提供Matlab代码

非支配排序的鲸鱼优化算法(Non-Dominated Sorting Whale Optimization Algorithm,NSWOA)由Pradeep Jangir和 Narottam Jangir于2017年提出。

2022-11-09 09:09:23 218

原创 多目标优化算法:基于非支配排序的瞪羚优化算法(Non-Dominated Sorting Gazelle Optimization Algorithm,NSGOA)

基于非支配排序的瞪羚优化算法(Non-Dominated Sorting Gazelle Optimization Algorithm,NSGOA)由瞪羚优化算法与非支配排序策略结合而成。将NSGOA用于求解46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行评价。

2022-10-31 11:52:03 308 1

原创 瞪羚优化算法(Gazelle Optimization Algorithm,GOA)

瞪羚优化算法(Gazelle Optimization Algorithm,GOA)由Agushaka等人于2022年提出,该算法模拟了瞪羚逃避捕食者的行为,思路新颖,性能高效。

2022-10-29 12:40:47 703 1

原创 单目标优化:海马优化算法(Sea Horse Optimizer,SHO)求解CEC2020(提供Matlab代码)

海马优化算法(Sea Horse Optimizer,SHO)由Shijie Zhao等人于2022年提出,该算法性能高效,思路新颖。参考文献:Zhao, S., Zhang, T., Ma, S. et al. Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems. Appl Intell (2022). https://doi.org/10.1007/s10489-02

2022-10-22 10:41:23 505

原创 单目标优化:猎豹优化算法(The Cheetah Optimizer,CO)求解cec2020(提供Matlab代码)

猎豹优化算法(The Cheetah Optimizer,CO)由MohammadAminAkbari等人于2022年提出,该算法性能高效,思路新颖。参考文献: Akbari, M.A., Zare, M., Azizipanah-abarghooee, R. et al. The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci Rep 12,

2022-10-22 10:35:27 310

原创 单目标优化:火鹰优化算法(Fire Hawk Optimizer,FHO)求解cec2020(提供Matlab代码)

火鹰优化算法(Fire Hawk Optimizer,FHO)由Mahdi Azizi等人于2022年提出,该算法性能高效,思路新颖。参考文献:Azizi, M., Talatahari, S. & Gandomi, A.H. **Fire Hawk Optimizer: a novel metaheuristic algorithm**. Artif Intell Rev (2022). https://doi.org/10.1007/s10462-022-10173-w

2022-10-22 10:24:59 290 1

动态多目标测试函数DF1的PS

动态多目标测试函数DF1的PS

2022-09-17

动态多目标测试函数DF1的PF

动态多目标测试函数DF1的PF

2022-09-17

手写数字识别数据集Mnist.zip

Minist数据集训练和测试全部都在

2021-08-24

t10klabel.txt

Minst数据集TXT版本(标签)

2021-08-24

t10kimages.txt

Minist数据集的TXT版本

2021-08-24

pso-cpu.cpp

CPU版本的粒子群优化算法,主要是用于求解函数优化,用于GPU版本的粒子群算法进行对比,效果理想,可以直接运行。

2021-08-24

pso-gpu-shared.cu

使用CUDA编程实现并行粒子群优化算法,主要运算部分在GPU上实现,CPU实现逻辑控制。并行计算比串行块10倍多,速度快,精度高。

2021-08-24

基于肤色的RGB多人脸检测

可以实现多人脸图像的检测,代码有注释,便于新手理解和学习。首先对人脸肤色的色素进行统计,如何在RGB空间下进行建立人脸肤色模型,最后使用MATLAB对其实现,准确度高,代码亲测可以实现。

2020-09-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除