自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

IT猿手

源代码欢迎添加博客下方的博主微信

  • 博客(576)
  • 资源 (6)
  • 收藏
  • 关注

原创 不闭合三维TSP:蜣螂优化算法DBO求解不闭合三维TSP(起点固定,终点不定,可以更改数据集),MATLAB代码

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

2024-05-24 19:28:18 481

原创 不闭合三维TSP:灰狼优化算法GWO求解不闭合三维TSP(起点固定,终点不定,可以更改数据集),MATLAB代码

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

2024-05-24 18:27:33 600

原创 不闭合三维TSP:蛇优化算法SO求解不闭合三维TSP(起点固定,终点不定,可以更改数据集),MATLAB代码

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

2024-05-23 21:26:09 681

原创 不闭合三维TSP:成长优化算法GO求解不闭合三维TSP(起点固定,终点不定,可以更改数据集),MATLAB代码

旅行商问题(Traveling salesman problem, TSP)是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

2024-05-23 21:23:56 728

原创 多目标应用:基于NSGA2求解柔性作业车间调度问题(FJSP),MATLAB代码

柔性作业车间调度问题(Flexible Job Scheduling Problem, FJSP) 的描述如下:n个工件JJ2​..Jn​要在m台机器M1​M2​..Mm​上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。

2024-05-21 21:52:31 658

原创 FJSP:蛇优化算法SO求解柔性作业车间调度问题(FJSP),提供MATLAB代码

蛇优化算法(Snake Optimizer,SO)由Fatma A. Hashim和Abdelazim G. Hussien于2022年提出,该算法思路新颖,快速高效,模拟了蛇的觅食和繁殖行为。

2024-05-21 20:27:36 868 1

原创 FJSP:粒子群优化算法PSO求解柔性作业车间调度问题(FJSP),提供MATLAB代码

粒子群优化算法是一种基于群体智能的优化算法,它模拟了鸟群捕食时的行为,利用群体中的个体通过信息共享和合作来寻找最优解。该算法具有全局搜索能力、高效性和易于实现等优点。算法流程如下:初始化:随机生成一定数量的粒子,并给每个粒子随机赋予一个初始速度和位置。适应度计算:对于每个粒子,计算其适应度值。更新个体最优解:将每个粒子当前的位置与其历史最优位置进行比较,更新个体最优解。更新群体最优解:将所有粒子的历史最优位置进行比较,更新群体最优解。

2024-05-21 20:15:49 542

原创 多目标应用:基于多目标人工蜂鸟算法MOAHA的移动机器人路径规划研究(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-05-20 22:08:08 866

原创 多目标应用:基于多目标水母搜索算法MOJS的移动机器人路径规划研究(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-05-20 21:14:56 700

原创 多目标应用:基于多目标灰狼优化算法MOGWO的移动机器人路径规划研究(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-05-19 21:00:28 769

原创 多目标应用:基于NSGA-Ⅱ算法的移动机器人路径规划研究(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-05-19 20:37:42 915

原创 FJSP:遗传算法GA求解柔性作业车间调度问题(FJSP),提供MATLAB代码

遗传算法是一种基于生物学的自适应搜索和优化算法,主要用于求解复杂的优化问题。它是通过模拟自然界中生物种群进化的过程来进行搜索的。遗传算法的基本流程包括:初始化种群、选择个体、交叉、变异、评估适应度值、进化新种群等步骤。其中,个体是指问题的一个可能解,种群是指多个个体的集合。通过对种群中个体进行选择、交叉和变异等操作,可以产生新的种群,逐渐优化搜索结果。其基本流程如下:初始化:随机生成一组初始个体,称为种群。评估:计算种群中每个个体的适应度值,评估其好坏程度。

2024-05-17 22:04:54 649

原创 无人机集群路径规划:黑翅鸢优化算法(Black-winged kite algorithm,BKA)求解无人机集群路径规划,提供MATLAB代码

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。本文中以5个无人机构成无人机集群,采用优化算法同时规划五个无人机的路径,每个无人机的成本由路径成本、威胁成本、高度成本和转角成本四个部分构成。无人机集群的总成本为5个无人机成本之和。

2024-05-17 21:54:08 423

原创 无人机集群路径规划:遗传算法求解无人机集群路径规划,提供MATLAB代码

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。本文中以5个无人机构成无人机集群,采用优化算法同时规划五个无人机的路径,每个无人机的成本由路径成本、威胁成本、高度成本和转角成本四个部分构成。无人机集群的总成本为5个无人机成本之和。

2024-05-17 21:37:37 282

原创 五种算法(黑翅鸢优化算法BKA、麻雀搜索算法SSA、螳螂搜索算法MSA、红尾鹰算法RTH、霸王龙优化算法TROA)求解机器人路径规划(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-05-12 17:45:17 933

原创 动态多目标优化算法:基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解DCP1-DCP9(提供MATLAB代码)

基于自适应启动策略的混合交叉动态多目标优化算法(Mixture Crossover Dynamic Constrained Multi-objective Evolutionary Algorithm Based on Self-Adaptive Start-Up Strategy, MC-DCMOEA)由耿焕同等人于2015年提出,其基于自适应冷热启动、混合交叉算子与精英群体的局部搜索等技术方法,力求克服单独采用冷启动方式而出现再次收敛速度慢、单种交叉算子 自适应不够以及正态变异多样性程度偏弱等问题。

2024-05-12 12:48:05 939

原创 基于蛇优化算法SO的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

起点位置 横坐标与纵坐标需为50的倍数。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");路径长度:1448.634698。xlabel('迭代次数')ylabel('路径长度')

2024-05-12 11:11:32 725

原创 基于北方苍鹰优化算法NGO的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

起点位置 横坐标与纵坐标需为50的倍数。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");路径长度:1539.544374。xlabel('迭代次数')ylabel('路径长度')

2024-05-12 11:09:08 536

原创 基于灰狼优化算法GWO的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

[1]杜晓玉,郭启程,李茵茵,et al.城市环境下基于改进鲸鱼算法的无人机三维路径规划方法[J].计算机科学, 2021, 48(12):8.DOI:10.11896/jsjkx.201000021.

2024-05-12 11:06:56 351

原创 基于鹈鹕优化算法POA的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

起点位置 横坐标与纵坐标需为50的倍数。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");路径长度:1610.286263。xlabel('迭代次数')ylabel('路径长度')

2024-05-12 11:02:02 899

原创 基于五种算法(DBO、RUN、SO、HO、EPO)的无人机城市地形下路径规划,可以修改障碍物及起始点(MATLAB代码)

参考文献:Xue Jiankai, Shen Bo. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. Journal of Supercomputing, 2023,79(7):7305-7336.

2024-05-08 22:37:14 877

原创 五种算法(BWO、RUN、SO、HO、GWO)求解复杂城市地形下无人机路径规划,可以修改障碍物及起始点(MATLAB)

参考文献:Zhong C, Li G, Meng Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm[J].

2024-05-08 21:30:23 864

原创 无人机路径规划:基于蜣螂优化算法DBO的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

起点位置 横坐标与纵坐标需为50的倍数。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");路径长度:1448.611772。xlabel('迭代次数')ylabel('路径长度')

2024-05-08 14:39:36 693

原创 无人机路径规划:基于鲸鱼优化算法WOA的复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

起点位置 横坐标与纵坐标需为50的倍数。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");路径长度:1448.608844。xlabel('迭代次数')ylabel('路径长度')

2024-05-08 14:36:56 920

原创 多目标应用:MOJS多目标水母优化算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-05-01 16:47:33 975

原创 多目标应用:MSSA多目标樽海鞘优化算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-05-01 16:43:06 1342 1

原创 三维SDMTSP:遗传算法GA求解三维单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

第5个旅行商的路径:10->13->1->24->23->7->17->4->2->10。第2个旅行商的路径:10->14->22->11->25->19->10。第3个旅行商的路径:10->29->9->21->16->15->10。第1个旅行商的路径:10->28->5->3->20->18->10。第4个旅行商的路径:10->27->8->12->6->26->10。第1个旅行商的总目标函数值:2064.510111。第3个旅行商的总目标函数值:1748.757845。

2024-04-30 14:41:16 334

原创 三维SDMTSP:蛇优化算法SO求解三维单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。

2024-04-30 14:37:12 75

原创 三维SDMTSP:GWO灰狼优化算法求解三维单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

围绕着各推销员的起始点和终止点来划分,多旅行商问题大致可以分为四种,其中单仓库多旅行商问题是其中一种。第5个旅行商的路径:10->29->3->26->5->12->21->8->16->10。第1个旅行商的路径:10->18->17->22->14->4->10。第2个旅行商的路径:10->19->25->11->15->2->10。第3个旅行商的路径:10->13->1->23->7->27->10。第4个旅行商的路径:10->20->24->9->6->28->10。

2024-04-30 14:35:18 391

原创 多目标应用:MOAHA多目标人工蜂鸟算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-28 20:15:02 920

原创 多目标应用:NSGA-Ⅱ算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-28 20:09:25 1096

原创 多目标应用:MOCS多目标布谷鸟搜索算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-25 20:15:35 788

原创 多目标应用:MOHHO多目标哈里斯鹰优化算法求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-25 20:11:04 842

原创 多目标应用:基于多目标灰狼优化算法MOGWO求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-23 22:57:54 834

原创 多目标应用:基于非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-23 22:25:43 1006

原创 多目标应用:基于非支配排序的鱼鹰优化算法NSOOA求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-23 21:59:55 1072

原创 多目标应用:基于非支配排序粒子群优化算法NSPSO求解无人机三维路径规划(MATLAB代码)

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

2024-04-23 21:16:51 1334

原创 动态多目标测试函数DF1-DF14,FDA1-FDA5,SDP1-SDP12的TurePOF(MATLAB代码)

动态多目标测试函数FDA1、FDA2、FDA3、FDA4、FDA5的turePOF(MATLAB代码)动态多目标测试函数SDP1-SDP12的TurePOF变化视频(含MATLAB代码及参考文献)动态多目标测试函数DF1-DF14的turePOF变化(提供MATLAB代码)

2024-04-11 22:36:49 429

原创 四种算法(麻雀搜索算法SSA、螳螂搜索算法MSA、红尾鹰算法RTH、霸王龙优化算法TROA)求解机器人路径规划(提供MATLAB代码)

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。

2024-04-11 14:12:54 1599

原创 机器人路径规划:基于移动机器人路径规划的Q-learning算法,可以自定义地图,修改起始点,提供MATLAB代码

Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过环境的作用,形成新的状态s(t+1),并产生回报或惩罚r(t+1),通过式(1)更新Q表后,若Q(s,a)值变小,则表明机器人处于当前位置时选择该动作不是最优的,当下次机器人再次处于该位置或状态时,机器人能够避免再次选择该动作action. 重复相同的步骤,机器人与环境之间不停地交互,就会获得到大量的数据,直至Q表收敛。

2024-04-10 16:16:58 967

进化动态约束多目标优化测试集DCP1的TruePF图片

进化动态约束多目标优化测试集DCP1的TruePF图片

2024-04-05

进化动态约束多目标优化测试集DCP1-DCP9的TruePF视频

进化动态约束多目标优化测试集DCP1-DCP9的TruePF视频

2024-04-05

无人机路径规划视频MATLAB

无人机路径规划视频

2023-05-13

动态多目标测试函数DF1的PS

动态多目标测试函数DF1的PS

2022-09-17

动态多目标测试函数DF1的PF

动态多目标测试函数DF1的PF

2022-09-17

手写数字识别数据集Mnist.zip

Minist数据集训练和测试全部都在

2021-08-24

t10klabel.txt

Minst数据集TXT版本(标签)

2021-08-24

t10kimages.txt

Minist数据集的TXT版本

2021-08-24

pso-cpu.cpp

CPU版本的粒子群优化算法,主要是用于求解函数优化,用于GPU版本的粒子群算法进行对比,效果理想,可以直接运行。

2021-08-24

pso-gpu-shared.cu

使用CUDA编程实现并行粒子群优化算法,主要运算部分在GPU上实现,CPU实现逻辑控制。并行计算比串行块10倍多,速度快,精度高。

2021-08-24

基于肤色的RGB多人脸检测

可以实现多人脸图像的检测,代码有注释,便于新手理解和学习。首先对人脸肤色的色素进行统计,如何在RGB空间下进行建立人脸肤色模型,最后使用MATLAB对其实现,准确度高,代码亲测可以实现。

2020-09-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除