lightoj1119_简单状压dp

题目链接:http://lightoj.com/volume_showproblem.php?problem=1119

题目大意:给你n份工作,每份工作 i 的花费是 p[i][i] ,在做第i份工作之前,如果之前做了第j份工作,就需要加上p[i][j],问你怎么排列工作才能使得花费最少

 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #include <vector>
 7 #include <ctime>
 8 #include <queue>
 9 #include <list>
10 #include <set>
11 #include <map>
12 using namespace std;
13 #define INF 0x3f3f3f3f
14 typedef long long LL;
15 
16 int p[20][20], dp[20][1<<15];
17 int main()
18 {
19     int t, n;
20     scanf("%d", &t);
21     for(int ca = 1; ca <= t; ca++)
22     {
23         scanf("%d", &n);
24         for(int i = 1; i <= n; i++)
25             for(int j = 1; j <= n; j++)
26                 scanf("%d", &p[i][j]);
27         memset(dp, INF, sizeof(dp));
28         for(int i = 0; i < n; i++)
29             dp[1][1<<i] = p[i+1][i+1];
30         for(int i = 2; i <= n; i++)
31         {
32             for(int j = 1; j < (1 << n); j++)
33             {
34                 int te = j, s = 0;
35                 while(te)
36                 {
37                     if(te % 2)
38                         s++;
39                     te >>= 1;
40                 }
41                 if(s != i-1)
42                     continue;
43                 for(int l1 = 0; l1 < n; l1++)
44                 {
45                     if((1<<l1) & j)
46                         continue;
47                     int sum = dp[i-1][j] + p[l1+1][l1+1];
48                     for(int k = 0; k < n; k++)//1
49                         if((1<<k)&j)
50                             sum += p[l1+1][k+1];
51                     dp[i][j|(1<<l1)] = min(dp[i][j|(1<<l1)], sum);
52                 }
53             }
54         }
55         printf("Case %d: %d\n", ca, dp[n][(1<<n)-1]);
56     }
57     return 0;
58 }

 

转载于:https://www.cnblogs.com/luomi/p/5943504.html

Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要求出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值