解题报告:LightOJ_1406 状压DP

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77763076

题目链接

题意:

给定一张有向图,问最少能拆成几条路径要求包含所有点 且 不同路径之间没有重点,同一可以重复经过同一点(点数<=15,边数<=40)

思路:

定义

ok[x][y]:x集合是否存在一条以y点结尾的路径

dp[x]   :x集合的最少路径数

dp[x] = min( dp[i] + dp[j] )      i^j==x && i&j==0

因为有环,那么每次处理出一个可行的ok[x][y]时,dfs()找x集合其他可行的结束点

代码:

#include<bits/stdc++.h>

using namespace std;

bool G[15][15];
bool ok[1<<15][15];
int dp[1<<15];

bool check(int x,int t){
   for(int i=0;i<15;i++)if(ok[x][i]&&G[i][t])
      return true;
   return false;
}

void Dfs(int x,int t){
   for(int i=0,j=1;j<=x;i++,j<<=1)
      if((x&j)&&G[t][i]&&!ok[x][i]){
         ok[x][i] = true;
         Dfs(x,i);
      }
}

void work(int x){
   dp[x] = 0;
   for(int i=0,j=1;j<=x;i++,j<<=1){
      if((j&x) && !ok[x][i] ){
         int t = j^x;
         if(!t||check(t,i)){
            ok[x][i]=true;
            Dfs(x,i);
         }
      }if(ok[x][i])dp[x]=1;
   }
}

int main()
{
   int T,Cas=0;scanf("%d",&T);
   while(T--){
      memset(G,0,sizeof(G));
      memset(ok,0,sizeof(ok));
      ok[0][0]=true;
      int n,m;scanf("%d%d",&n,&m);
      while(m--){
         int s,t;scanf("%d%d",&s,&t);--s;--t;
         G[s][t]=1;
      }int ed = (1<<n);
      for(int i=1;i<ed;++i)work(i);
      for(int i=1;i<ed;++i)if(!dp[i]){dp[i] = 100;
         for(int j=i;j;j=i&(j-1))
            dp[i] = min(dp[i],dp[j]+dp[i^j]);
      }printf("Case %d: %d\n",++Cas,dp[ed-1]);
   }return 0;
}


阅读更多

没有更多推荐了,返回首页