【NOIP2017】小凯的疑惑

本题在洛谷上的链接:https://www.luogu.org/problemnew/show/P3951#sub


 

简化一下问题,就是对于ax+by=c,求一个最大的c,使得方程不存在非负整数解。

我们设有一组特解(x0,y0),那么根据此类直线方程的性质,则通解可表示为(x0-kb,y0+ka)。

显然,存在一组特解(x1,y1),使得0<=x1<=b-1,我们试图研究那些不存在非负整数解的情况,所以设y1<=-1。

此时,c=ax1+by1<=a(b-1)+b(-1)=ab-a-b,说明所有无非负整数解情况的c必然不超过ab-a-b,但我们还需要证明当c=ab-a-b时无非负整数解。

直接用反证法即可。设c=ab-a-b时有非负整数解,则ax+by=ab-a-b,a(x+1)+b(y+1)=ab。

因为a,b互质,所以有a|y+1,b|x+1,故y+1>=a,x+1>=b,则a(x+1)+b(y+1)>=2ab,显然矛盾,故当c=ab-a-b时无非负整数解。

 

 1 #include <iostream>
 2 
 3 using namespace std;
 4 
 5 typedef long long ll;
 6 
 7 int main() {
 8     ll a, b;
 9     cin >> a >> b;
10     cout << a * b - a - b;
11     return 0;
12 }
AC代码

 

转载于:https://www.cnblogs.com/Mr94Kevin/p/9774214.html

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值