HDU 1395

 

2^x mod n = 1

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16883    Accepted Submission(s): 5262


Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
 

 

Input
One positive integer on each line, the value of n.
 

 

Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.
 

 

Sample Input
2 5
 

 

Sample Output
2^? mod 2 = 1 2^4 mod 5 = 1
 
#include "stdio.h"
int main()
{
    int n;
    while(~scanf("%d",&n)&&n){
        if(n==1||n%2==0){
            printf("2^? mod %d = 1\n",n);
            continue;
        }
        else{
            int x=1,mut=2;
            mut%=n;
            while(mut!=1){
                x++;
                mut=mut*2%n;
            }
            printf("2^%d mod %d = 1\n",x,n);
        }
    }
    return 0;
}

开始时Time Limit Exceeded

改进1.n==1情况  2.循环式取余,减少运算量

转载于:https://www.cnblogs.com/kimsimple/p/6545402.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值