上传人员照片

@ApiOperation(value = "上传人员照片", notes = "上传人员照片")
@PostMapping(value = "/uploadBasePersonPic")
public JsonResult<String> handleFileUpload(
@ApiParam(name = "file", value = "人员照片")
@RequestParam("file") MultipartFile file,
@ApiParam(name = "pPersonId", value = "人员id", required = true)
@RequestParam String pPersonId) {
logger.info("上传人员照片接口请求参数");
UserInfo info = this.getUserInfo();
//得到文件名
String fileName = file.getOriginalFilename();
//截取文件扩展名
String fileExtension = "";
fileExtension = fileName.substring(fileName.lastIndexOf('.')).toLowerCase();
//保存不更新图片
String imageType = ".jpg";
if (!imageType.equals(fileExtension)) {
String msg = "只能上传JPG格式的图片文件";
return JsonResult.get(HttpReturnEnums.ParaError, null, msg);
}

//上传文件 自动生成新的唯一文件名 路径前面追加日期 yyyyMMdd格式
String url=null;
try {
String fileKeyName = UploadPath.UPLOAD_PATH_PERSON_PIC + info.getDid() + "/" + fileName;
String filePrefixDateGenerateNewName = fileStrorage.putFileGenerateNewName(fileKeyName, file.getBytes());
url=fileStrorage.getFilePresignedUrl(filePrefixDateGenerateNewName,1*60*60*1000).toString();
basePersonService.updatePersonPic(info.getDid(),pPersonId,filePrefixDateGenerateNewName);
logger.info("fileKeyName:{}", fileKeyName);
logger.info("filePrefixDateGenerateNewName:{}", filePrefixDateGenerateNewName);
logger.info("url:{}", url);
} catch (IOException e) {
return JsonResult.get(HttpReturnEnums.ParaError, null, "上传图片服务器失败");
}
return JsonResult.get(url);
}

转载于:https://www.cnblogs.com/pan-my/p/11046742.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 随着社交媒体的流行与日益普及,照片精修服务也变得越来越受欢迎。在这个背景下,PyTorch成为了一种常用的编程框架,它提供了许多有用的工具和库,可以用于开发照片精修应用。 PyTorch提供了强大的图像处理和计算能力,可以通过它的深度学习算法对照片进行调整、修补和增强。例如,利用PyTorch可以实现图像去噪、降低模糊、提高图像清晰度、增强色彩等功能,可以使得照片更加真实、明亮和漂亮。 在开发照片精修应用时,PyTorch的灵活性也是非常有用的。可以通过它开发神经网络模型,并使用这些模型对照片进行分析和处理,而且这些模型可以进行高度定制以适应不同的应用需求。此外,PyTorch的易于扩展和使用的特性,可以让开发人员更快速的实现开发,并在应用上实现更好的效果。 总的来说,PyTorch是一个非常强大的编程框架,用于开发照片精修应用可以带来很大的好处。通过它提供的丰富工具和库,开发人员可以实现高质量的照片精修应用,使得用户可以享受更好的视觉体验和更加美好的生活。 ### 回答2: PyTorch是一种流行的深度学习框架,可以用于照片精修师开发。照片精修师通常需要利用计算机视觉技术来提高照片质量、调整颜色和对比度、修复瑕疵等。PyTorch提供了强大的工具和库来处理这些任务。 在照片质量提升方面,PyTorch可以用于图像超分辨率重建。通过训练一个超分辨率模型,可以将低分辨率图像转换为高分辨率图像,从而改善图像细节和清晰度。PyTorch提供了优化算法和卷积神经网络结构,使得训练和使用这样的模型变得简单和高效。 此外,PyTorch还可以用来调整照片的颜色和对比度。通过控制神经网络中的参数,可以实现各种色彩调整效果,如增加饱和度、改变色调等。PyTorch的动态图机制使得对这些参数进行优化和调整变得非常灵活。 照片中的瑕疵和噪声通常也需要进行修复。PyTorch可以用于图像修复任务,通过训练一个神经网络,可以自动检测和修复图像中的缺陷,如裂痕、划痕和污点。通过使用PyTorch的自动求导和反向播功能,可以高效地训练这样的修复模型。 综上所述,PyTorch是一种非常适合开发照片精修师的工具。它提供了强大的深度学习功能,可以用于图像超分辨率重建、调整颜色和对比度以及修复瑕疵。使用PyTorch,开发人员可以更快速、高效地实现各种照片精修任务。 ### 回答3: PyTorch是一种深度学习框架,可用于照片精修师的开发。照片精修师是指能够自动修复照片中的缺陷、改善照片质量的人工智能系统。 使用PyTorch进行照片精修师的开发可以通过以下步骤实现: 1. 数据准备:采集一大批具有不同特点和缺陷的照片作为训练数据集。这些照片应覆盖各种不同的场景和对象,如人物、风景等。 2. 模型设计:使用PyTorch构建一个卷积神经网络(CNN)模型。CNN模型是处理图像的一种有效模型,可以通过卷积、池化等操作提取图像的特征。 3. 数据预处理:将训练数据集进行预处理,包括图像增强、去噪、裁剪等操作,以提升训练效果。 4. 模型训练:使用训练数据集对CNN模型进行训练。通过将训练数据输入模型,不断优化模型参数,使其能够学习并且准确地修复照片的缺陷。 5. 模型评估:使用待修复的测试照片对训练好的模型进行评估。评估指标可以包括修复质量、修复效率等。 6. 模型优化:根据评估结果对模型进行优化和调整,以提高精修效果和提升模型的鲁棒性。 7. 模型部署:将训练好的模型部署到实际应用中,可以是一个手机App、网页等。用户可以上照片并通过模型修复照片的缺陷。 总结来说,使用PyTorch开发照片精修师需要进行数据准备、模型设计、数据预处理、模型训练、模型评估、模型优化和模型部署等一系列步骤。通过不断优化和调整模型,我们可以构建出一个高效准确的照片精修师,为用户提供更好的照片修复体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值