bzoj1006: [HNOI2008]神奇的国度

弦图染色

对于一般图,有性质最小染色数>=最大团

我们先用最大势求出完美消除序列,再逆序贪心涂色

正确性:

容易发现这样的涂色数=最大团数

而当前涂色数>=最小染色数

所以弦图最小染色数=最大团数

顺便放个:弦图还有一个这样的性质,最大独立集=最小团覆盖数,而在普通的图中是前者<=后者的

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;

struct node
{
    int x,y,next;
}a[2100000],e[2100000];int len,last[11000],elen,elast[11000];
void ins(int x,int y)
{
    len++;
    a[len].x=x;a[len].y=y;
    a[len].next=last[x];last[x]=len;
}
void eins(int x,int y)
{
    elen++;
    e[elen].x=x;e[elen].y=y;
    e[elen].next=elast[x];elast[x]=elen;
}

int n,lab[11000],vq[11000];bool b[11000];
void relab()
{
    int p=0,x;
    for(int i=1;i<=n;i++)eins(0,i);
    for(int i=n;i>=1;i--)
    {
        x=-1;
        while(x==-1)
        {
            int pre;
            for(int k=elast[p];k;pre=k,k=e[k].next)
            {
                int y=e[k].y;
                if(b[y]==false)x=y;
                else 
                {
                    if(k==elast[p])elast[p]=e[k].next;
                    else e[pre].next=e[k].next;
                }
            }
            p--;
        }
        p++;
        vq[i]=x;b[x]=true;
        for(int k=last[x];k;k=a[k].next)
        {
            int y=a[k].y;
            if(b[y]==false)
            {
                lab[y]++;
                eins(lab[y],y);
                p=max(p,lab[y]);
            }
        }
    }
}

int co,c[11000];
int ti,tim[11000];
void paint()
{
    co=ti=0;
    for(int i=n;i>=1;i--)
    {
        int x=vq[i]; ti++;
        for(int k=last[x];k;k=a[k].next)tim[c[a[k].y]]=ti;
        for(int j=1;;j++)
            if(tim[j]!=ti){c[x]=j;break;}
        co=max(co,c[x]);
    }
}

int main()
{
    int m,x,y;
    scanf("%d%d",&n,&m);
    len=0;memset(last,0,sizeof(last));
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        ins(x,y),ins(y,x);
    }
    relab();
    paint();
    printf("%d\n",co);
    
    return 0;
}

 

转载于:https://www.cnblogs.com/AKCqhzdy/p/10210778.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值