2726: [SDOI2012]任务安排
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1580 Solved: 466
[Submit][Status][Discuss]Description
机 器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的 若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是 各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。Input
第一行两个整数,N,S。接下来N行每行两个整数,Ti,Fi。Output
一个整数,为所求的答案。Sample Input
5 1
1 3
3 2
4 3
2 3
1 4
Sample Output
153HINT
Source
[ Submit][ Status][ Discuss]
复习了无数次CDQ分治和斜率优化,CDQ分治真的是博大精深。
但是,这道题,要个鬼CDQ分治啊!询问斜率不单调又不是插入点横坐标不单调!直接二分找切点不就好了!
说下思路吧,首先$O(n^3)$的DP谁都想得出来,考虑优化,f[i]记录前i个物品的信息。
但是问题来了,时间有后效性,前面的总时间对后面有影响,除非多设一维时间状态,而这样又是$n^3$的了,那么我们干脆就考虑前i个物品的总费用以及这i个物品给后面所有物品带来的费用之和。显然这样是满足无后效性,同时也满足最优子结构的。
设F[i]=f[i]前缀和,T[i]同理,则有DP方程:$dp[i]=min\{dp[j]+(T[i]-T[j]+S)(F[n]-F[j])\}$。这样复杂度就变为$O(n^2)$了。
熟练的选手一眼就知道这是斜率优化的形式,复杂度立刻降为$O(n)$。
但是!看Discuss知道这题的时间可以是负的!于是网上几乎所有的题解立刻全部变为CDQ分治版本,但其实并不需要,因为插入的点的横坐标仍然是单调的所以并不需要动态维护凸壳。询问斜率不单调的话直接二分找直线和凸壳的切点即可。这一点也是这题和货币兑换Cash的一个本质区别。
1 #include<cstdio> 2 #include<algorithm> 3 #define rep(i,l,r) for (int i=l; i<=r; i++) 4 typedef long long ll; 5 using namespace std; 6 7 const int N=1000010; 8 ll T[N],F[N],f[N]; 9 int n,s,S,st,ed,q[N]; 10 11 ll Y(int j){ return f[j]-F[n]*T[j]+F[j]*T[j]-F[j]*S; } 12 13 void dp(){ 14 st=ed=0; 15 rep(i,1,n){ 16 int l=0,r=ed-1,ans=ed; 17 while (l<=r){ 18 ll mid=(l+r)>>1; 19 if (1ll*(F[q[mid+1]]-F[q[mid]])*T[i]<=Y(q[mid+1])-Y(q[mid])) ans=mid,r=mid-1; else l=mid+1; 20 } 21 int j=q[ans]; f[i]=f[j]+(F[n]-F[j])*(T[i]-T[j]+S); 22 while (st<ed && 1ll*(Y(q[ed])-Y(q[ed-1]))*(F[i]-F[q[ed]])>=(Y(i)-Y(q[ed]))*(F[q[ed]]-F[q[ed-1]])) ed--; 23 q[++ed]=i; 24 } 25 } 26 27 int main(){ 28 freopen("bzoj2726.in","r",stdin); 29 freopen("bzoj2726.out","w",stdout); 30 scanf("%d%d",&n,&S); 31 rep(i,1,n) scanf("%lld%lld",&T[i],&F[i]),T[i]+=T[i-1],F[i]+=F[i-1]; 32 dp(); printf("%lld\n",f[n]); 33 return 0; 34 }