bzoj2726 [SDOI2012]任务安排(斜率优化+cdq分治)

83 篇文章 0 订阅
51 篇文章 1 订阅

bzoj2726 [SDOI2012]任务安排

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=2726

题意:
机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3…N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

数据范围
在别人的代码中寻找数据范围系列。
N<=300000,F没负的,T有负的,要开long long。

题解:
好题。
emmm大概我今天才会了斜率优化。

裸的DP发现这时间有后效性没法转移。
对于这样似乎有后效性的问题可以想想转化为计算对之后的贡献,提前计算代价。
对于一个任务,就是算他的时间卡的后面的任务的花费。

于是,若T和F分别是ti和fi的前缀和:
dp[i]=dp[j]+(FnFj)(TiTj+S)
就是 (ST[j])(FnFj)+dp[j]=Ti(FnFj)+dp[i]
若令 y=(ST[j])(FnFj)+dp[j]k=Tix=FnFjb=dp[i]
就是 y=kx+b 的直线, dp[i] 是截距。

如果这是个正常的题,就是时间是正的,那么k单增,直接就单调队列队列维护个凸包得了。
(其实x单增应该也可以直接维护个凸包然后二分? )

但是时间可以是负的,于是cdq分治。

之前自己在纠结两个点,
一是想不到怎么用归并来得到我想要得到的顺序,即做完左区间后,左区间按x单增,右区间按k单减,还得要左边的id小于右边的id,老是想sort, nlog2稳T。
实际上可以先在外面按k排序,在内部按id扔到左右,就是左id<右id,且k都单凋了,然后离开一个区间时归并排x即可。

第二个是这个斜率优化的上凸下凸。
实际上因为x单增,要求尽量小的dp[i],那么是维护下凸包,相应的,用来截凸包的线也应该k从大到小。
然后为了好处理倒了一下,变成上凸包。

UPD:抄抄doggu的总结

       {maxvalminvalkk

{

{pop

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
using namespace std;
const int N=300005;
int n,T[N],F[N],dp[N];
LL s;
struct node
{
    int id;
    LL x,y,k,val;
}a[N],b[N];
int cvx[N];
inline int read()
{
    int ret=0; int w=1; char ch=getchar();
    while((ch>'9'||ch<'0')&&ch!='-') ch=getchar();
    if(ch=='-') {w=-1,ch=getchar();}
    while(ch>='0'&&ch<='9')  ret=(ret<<1)+(ret<<3)+(ch^'0'),ch=getchar();
    return ret*w;
}
bool cmpk(const node &A,const node &B) {return A.k>B.k;}
bool cmpid(const node &A,const node &B) {return A.id<B.id;}
inline long double slope(int A,int B)
{
    if(a[A].x==a[B].x) return a[A].y>a[B].y?-1e20:1e20;
    return (long double)(a[B].y-a[A].y)/(a[B].x-a[A].x);
}
void solve(int lf,int rg)
{
    if(lf==rg) {a[lf].y=(a[lf].k-s)*a[lf].x-a[lf].val; return;}
    register int mid=(lf+rg)>>1,p1=lf-1,p2=mid,i;
    for(i=lf;i<=rg;i++)
    {
        if(a[i].id<=mid) b[++p1]=a[i];
        else b[++p2]=a[i];
    }
    for(i=lf;i<=rg;i++) a[i]=b[i];
    solve(lf,mid); int top=0;
    for(i=lf;i<=mid;i++)
    { 
        while(top>1&&slope(cvx[top-1],cvx[top])<=slope(cvx[top],i)) top--;
        top++; cvx[top]=i;
    }
    register int tmp=1;
    for(i=mid+1;i<=rg;i++)
    {
        while(tmp<top&&slope(cvx[tmp],cvx[tmp+1])>=(long double)a[i].k) tmp++;
        a[i].val=min(a[i].val,a[i].k*a[cvx[tmp]].x-a[cvx[tmp]].y);
    }
    solve(mid+1,rg);
    p1=lf; p2=mid+1; top=lf-1;
    while(p1<=mid&&p2<=rg)
    {
        if(a[p1].x<a[p2].x){b[++top]=a[p1]; p1++;}
        else {b[++top]=a[p2]; p2++;}
    }
    while(p1<=mid){b[++top]=a[p1]; p1++;}
    while(p2<=rg){b[++top]=a[p2]; p2++;}
    for(int i=lf;i<=rg;i++) a[i]=b[i];
}
int main()
{
    scanf("%d%lld",&n,&s);
    int i;
    for(i=1;i<=n;i++) T[i]=read(),F[i]=read();
    for(i=2;i<=n;i++) {T[i]+=T[i-1]; F[i]+=F[i-1];}
    for(i=1;i<=n;i++) {a[i].x=F[n]-F[i]; a[i].val=F[n]*(T[i]+s); a[i].k=T[i]; a[i].id=i;}
    sort(a+1,a+n+1,cmpk);
    solve(1,n); 
    sort(a+1,a+n+1,cmpid);
    printf("%lld\n",a[n].val);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值