题目:LINK
题意:求满足题目要求的x序列的种类数。
能够发现符合条件的序列去重后是一个0, 1, ..., k的连续序列(k满足k*(k+1)/2 <= n) ,则这个去重后的序列长度最长为sqrt(n)规模大小。
能够DP。dp[i][j]表示用到1~i的连续数字当前和为j的方法数。不用考虑长度是否满足n个,由于前面能够用0补上去。
dp[i][j] = dp[i][j-i] + dp[i-1][j-i];
ans = sum(dp[i][n]) for i in range(1, k)
/* ***********************************************
Author : Napoleon
Mail : tyfdream@163.com
Created Time : 2015-03-14 10:55:36
Problem : BC_32_D.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define INF 1000000000
//typedef __int64 LL;
#define N 50005
int n, t, m, dp[360][N];
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
scanf("%d", &t);
int ti = 0;
while(t--) {
scanf("%d%d", &n, &m);
int M = 0;
while(M*(M+1) <= 2*n) M++;
M--;
dp[0][0] = 1;
for(int i = 1;i <= M; i++) {
for(int j = i; j <= n; j++) {
dp[i][j] = (dp[i][j-i] + dp[i-1][j-i]) % m;
}
}
int ans = 0;
for(int i = 1; i <= M; i++) {
ans = (ans + dp[i][n]) % m;
}
printf("Case #%d: %d\n", ++ti, ans);
}
return 0;
}