Equation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 64 Accepted Submission(s): 20
Problem Description
Gorwin is very interested in equations. Nowadays she gets an equation like this
x1+x2+x3+⋯+xn=n , and here
For a certain n , Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m .
x1+x2+x3+⋯+xn=n , and here
0≤xi≤nfor1≤i≤nxi≤xi+1≤xi+1for1≤i≤n−1
For a certain n , Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m .
Input
Multi test cases. The first line of the file is an integer
T
indicates the number of test cases.
In the next T lines, every line contain two integer n,m .
[Technical Specification]
1≤T<20
1≤n≤50000
1≤m≤1000000000
In the next T lines, every line contain two integer n,m .
[Technical Specification]
1≤T<20
1≤n≤50000
1≤m≤1000000000
Output
For each case output should occupies one line, the output format is Case #id: ans, here id is the data number starting from 1, ans is the result you are expected to output.
See the samples for more details.
See the samples for more details.
2 3 100 5 100
Case #1: 2 Case #2: 3
BestCoder Round #32
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5185
题目大意:问按照题目所给的公式,有多少种不同的方法得到n,方法数对m取余
题目分析:因为n比较大,直接背包,时间空间都不允许,考虑公式性质,最大的情况下获得n,即1~ma求和,ma * (ma + 1) / 2 == n
化简可以得到ma = (sqrt(8n + 1) - 1) / 2,时间空间复杂度均化为nsqrt(n),考虑dp[i][j]表示前i个数字合成数字j的种类数,则转移方程为
dp[i][j] = dp[i - 1][j - i] + dp[i][j - i],前i个数字合成j的种类数等于合成j-i时放了i和没放i两种情况的和,dp[0][0] = 1
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5185
题目大意:问按照题目所给的公式,有多少种不同的方法得到n,方法数对m取余
题目分析:因为n比较大,直接背包,时间空间都不允许,考虑公式性质,最大的情况下获得n,即1~ma求和,ma * (ma + 1) / 2 == n
化简可以得到ma = (sqrt(8n + 1) - 1) / 2,时间空间复杂度均化为nsqrt(n),考虑dp[i][j]表示前i个数字合成数字j的种类数,则转移方程为
dp[i][j] = dp[i - 1][j - i] + dp[i][j - i],前i个数字合成j的种类数等于合成j-i时放了i和没放i两种情况的和,dp[0][0] = 1
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int dp[317][50001];
int main()
{
int T, n, m;
scanf("%d", &T);
for(int ca = 1; ca <= T; ca++)
{
dp[0][0] = 1;
scanf("%d %d", &n, &m);
int ans = 0, ma = (sqrt(8 * n + 1) - 1) / 2;
for(int j = 1; j <= n; j++)
for(int i = 1; i <= min(j, ma); i++)
dp[i][j] = (dp[i][j - i] + dp[i - 1][j - i]) % m;
for(int i = 1; i <= ma; i++)
ans = (ans + dp[i][n]) % m;
printf("Case #%d: %d\n", ca, ans);
}
}