HDU 5185 Equation (线性dp 完全背包)


Equation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 64    Accepted Submission(s): 20

Problem Description
Gorwin is very interested in equations. Nowadays she gets an equation like this
x1+x2+x3++xn=n , and here
0xinfor1inxixi+1xi+1for1in1

For a certain n , Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m .
 

Input
Multi test cases. The first line of the file is an integer T indicates the number of test cases.
In the next T lines, every line contain two integer n,m .

[Technical Specification]
1T<20
1n50000
1m1000000000
 

Output
For each case output should occupies one line, the output format is Case #id: ans, here id is the data number starting from 1, ans is the result you are expected to output.
See the samples for more details.
 
Sample Input
  
  
2 3 100 5 100
 
Sample Output
  
  
Case #1: 2 Case #2: 3
 
Source
BestCoder Round #32

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5185

题目大意:问按照题目所给的公式,有多少种不同的方法得到n,方法数对m取余

题目分析:因为n比较大,直接背包,时间空间都不允许,考虑公式性质,最大的情况下获得n,即1~ma求和,ma * (ma + 1) / 2 == n
化简可以得到ma = (sqrt(8n + 1) - 1) / 2,时间空间复杂度均化为nsqrt(n),考虑dp[i][j]表示前i个数字合成数字j的种类数,则转移方程为
dp[i][j] = dp[i - 1][j - i] + dp[i][j - i],前i个数字合成j的种类数等于合成j-i时放了i和没放i两种情况的和,dp[0][0] = 1

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int dp[317][50001];

int main()
{
    int T, n, m;
    scanf("%d", &T);
    for(int ca = 1; ca <= T; ca++)
    {
        dp[0][0] = 1;
        scanf("%d %d", &n, &m);
        int ans = 0, ma = (sqrt(8 * n + 1) - 1) / 2;
        for(int j = 1; j <= n; j++)
            for(int i = 1; i <= min(j, ma); i++)
                dp[i][j] = (dp[i][j - i] + dp[i - 1][j - i]) % m;
        for(int i = 1; i <= ma; i++) 
            ans = (ans + dp[i][n]) % m;
        printf("Case #%d: %d\n", ca, ans);
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值