JS递归基础

递归基础

递归的概念

在程序中函数直接或间接调用自己

  1. 直接调用自己
  2. 简介调用自己

跳出结构,有了跳出才有结果

递归的思想

递归的调用,最终还是要转换为自己这个函数

  1. 如果有个函数foo,如果他是递归函数,到最后问题还是转换为函数foo的形式
  2. 递归的思想就是将一个未知问题转换为一个已解决的问题来实现
function foo(){
    ...foo(...)...
}
复制代码

递归的步骤(技巧)

  1. 假设递归函数已经写好
  2. 寻找递推关系
  3. 将递推关系的结构转换为递归体
  4. 将临界条件加入到递归体中

简单递归练习

求1-100的和

分析:

  1. 假设递归函数已经写好为sum,既sum(100),就是求1-100的和
  2. 寻找递推关系: 就是 n 与 n-1 ,或 n-2 之间的关系: sum(n) == sum(n-1) + n
var res = sum(100);
var res = sum(99) + 100;
复制代码
  1. 将递归结构转换成递归体
function sum(n){
    return sum(n-1) + n;
}
复制代码
  1. 将临界条件加入到递归中
100 转换为 求9999 转换为 求9898 转换为 求97
...
求2 转换为 求11 转换为 求1
即 sum(1) = 1
复制代码
  1. 递归函数
function sum(n){
    if(n==1) return 1;
    return sum(n-1) + n;
}
复制代码

求 1,3,5,7,9,...第n项的结果和前n项和,序号从0开始

第n项的结果

分析:

  1. 假设递归函数已经完成foo(n),得到奇数
  2. 递归关系: foo(n) = foo(n-1)+2
  3. 递归体
function foo(n){
    return foo(n) = sum(n-1)+2;
}
复制代码
  1. 跳出条件
1. foo(n) = foo(n-1) + 2
2. foo(1) = foo(0) + 2
3. foo(0) = 1;
复制代码
  1. 递归函数
function foo(n){
    if(n == 0) return 1;
    return foo(n-1) + 2;
}
复制代码
前 n 项的和

分析:

  1. 假设完成,sum(n)就是前n项的和
  2. 递推关系foo(n) = sum(n) + 第n-1项之前的和
  3. 递归体
function sum(n){
    return foo(n) + sum(n-1);
}
复制代码
  1. 临界条件n == 1 ,结果为1
  2. 递归函数
function foo(n){
    if(n == 0) return 1;
    return foo(n-1) + 2;
}

function sum(n){
    if(n == 0) return 1;
    return foo(n) + sum(n-1);
}
复制代码

求 2,4,6,8,10... 第n项与前n项之和

分析:

  1. 假设已知函数 fn(n)为第n项,sum(n)为前n项之和
  2. 递归关系:
fn(n) = fn(n-1) + 2
sum(n) = fn(n) + sum(-1)
复制代码
  1. 递归体
function fn(n){
    return fn(n) = (n-1) + 2
}
function sum(n){
    return sum(n) = fn(n) + sum(n-1);
}
复制代码
  1. 临界条件
fn(0) = 2
sum(0) = 2
复制代码
  1. 递归函数
function fn(n){
    if(n == 0) return 2;
    return fn(n-1) + 2;
}
function sum(n){
    if(n==0) return 2;
    return fn(n) + sum(n-1);
}

复制代码

数列 1,1,2,4,7,11,16...求第 n 项,求前n项和

分析:

  1. 假设已知函数 foo(n) 为第n项
  2. 递归关系:
// 从第 0 项开始计算0 项, 1 => foo(0) + 0 = foo(1)
第 1 项, 2 => foo(1) + 1 = foo(2)
第 2 项, 3 => foo(2) + 2 = foo(3)
...
第 n-1 项, n => foo(n-1) + n-1 = foo(n)
foo(n) = foo(n-1) + n-1;

// 从第 1 项开始计算**1 项, 2 =>  fn( 1 ) + 0 = fn( 2 )
第 2 项, 3  =>  fn( 2 ) + 1 = fn( 3 )
第 3 项, 4  =>  fn( 3 ) + 2 = fn( 4 )
...
foo(n) = fn(n-1) + n - 2
如果从 0 开始

0  1  2  3  4  5   6
1, 1, 2, 4, 7, 11, 16,

// 如果从 1 开始
1  2  3  4  5  6   7
1, 1, 2, 4, 7, 11, 16
复制代码
  1. 递归体
function foo(n){
    return foo(n-1)+n-1;
}
复制代码
  1. 临界条件
foo(0) == 1;
foo(1) == 1;
复制代码
  1. 递归函数
function foo(n){
    if(n == 0) return 1;
    return foo(n-1) + n -1;
}
复制代码

分析:

  1. 假设已知函数 sum(n)为前n项和

  2. 递归关系: sum(n) = foo(n) + sum(n-1)

  3. 递归体

function sum(n){
    return foo(n) + sum(n-1);
}
复制代码
  1. 临界条件: sum(0) = 1
  2. 递归函数
function sum(n){
    if(n == 0) return 1;
    return foo(n) + sum(n-1);
}
复制代码

Fibonacci数列(斐波那契数列)

1,1,2,3,5,8,13,21,34,55,89...求第 n 项

分析:

  1. 假设已知 fib(n) 为第 n 项
  2. 递归关系: fib(n) = fib(n-1) + fib(n-2)
  3. 递归体
function fib(n){
    return fib(n-1)+fib(n-2);
}
复制代码
  1. 临界条件
fib(0) == 1
fib(1) == 1
复制代码
  1. 递归函数
function fib(n){
    if(n == 0 || n ==1) return 1;
    return fib(n-1) + fib(n-2);
}
复制代码

高级递归练习

阶乘

概念:

阶乘是一个运算, 一个数字的阶乘表示的是从 1 开始 累乘到这个数字.
例如:
    3! 表示 `1 * 2 * 3`
    5! 就是  `1 * 2 * 3 * 4 * 5`
    规定 0 没有阶乘
阶乘 从 1 开始.
复制代码

分析:

  1. 假设已知 foo(n) 为 1-n 的积
  2. 递归关系: foo(n) = foo(n-1)
  3. 递归体
function foo(n){
    return foo(n-1) * n
}
复制代码
  1. 临界条件: foo(1) == 1
  2. 递归函数
    function foo(n){
        if( n == 1) return 1;
        return foo(n - 1) * n;
    }
复制代码

求幂

概念:

求幂就是求 某一个数 几次方
2*2 2 的 平方, 2 的 2 次方
求 n 的 m 次方
最终要得到一个函数 power( n, m )
n 的 m 次方就是 m 个 n 相乘 即 n 乘以 (m-1) 个 n 相乘
复制代码

分析

  1. 假设已知函数 power(n,m) 为 n 的 m 次幂
  2. 递归关系: power(n, m-1) * n
  3. 递归体
    function power(n,m){
        return power(n,m-1) * n;
    }
复制代码
  1. 临界条件
m == 1 ,return n
m == 0 ,reutnr 1
复制代码
  1. 递归函数
function power(n,m){
    if(m == 1) return n;
    return power(n,m-1) * n;
}
复制代码

深拷贝,使用递归方式

概念:

  1. 如果拷贝的时候, 将数据的所有引用结构都拷贝一份, 那么数据在内存中独立就是深拷贝(内存隔离,完全独立)

  2. 如果拷贝的时候, 只针对当前对象的属性进行拷贝, 而属性是引用类型这个不考虑, 那么就是浅拷贝

  3. 拷贝: 复制一份. 指将对象数据复制.

  4. 在讨论深拷与浅拷的时候一定要保证对象的属性也是引用类型. 实现方法:

  5. 如果要实现深拷贝那么就需要考虑将对象的属性, 与属性的属性,都拷贝过来

  6. 分析(2个参数,简单实现)

    1. 假设已经实现 clone ( o1, o2),将对象 o2 的成员拷贝一份交给 o1
    2. 递推关系: 混合方法,将 o2 的成员拷贝到 o1 中
    function clone( o1, o2){
        for(var key in o2){
            o1[key] = o2[key];
        }
    }
    
    // 假设方法已经实现,如果 o2[key] 是对象
    // 继续使用这个方法
    // 需要考虑 o2[key] 是引用类型,再一次使用clone函数
    // 如果 o2[key] 不是引用类型,那么直接赋值
    复制代码
    1. 临界条件: 因为是 for in 循环,没有成员遍历时,自动结束
    2. 递归函数
    function clone(o1,o2){
        for(var key in o2){
            if(typeof o2[key] == 'object'){
                o1[key] = {};
                clone(o1[key],o2[key])
            }else{
                o1[key] = o2[key];
            }
        }
    }
    复制代码
  7. 复杂实现(一个参数) 原理: clone(o) = new Object; 返回一个对象 递归函数

function clone(o){
    var temp = {};
    for(var key in o){
        if(typeof o[key] == 'object'){
            temp[key] = clone(o[key]);
        }else{
            temp[key] = o[key];
        }
    }
    return temp;
}
复制代码

使用递归实现 getElementsByClassName

html结构:

<div>
    <div>1
        <div class="c">2</div>
        <div>3</div>
    </div>
    <div class="c">4</div>
    <div>5
        <div>6</div>
        <div class="c">7</div>
    </div>
    <div>8</div>
</div>
复制代码

分析

  1. 实现一个方法byClass()需要的参数是:
    • node: 在某个节点上寻找元素
    • className: 需要寻找的className
    • arr: 找到的元素存储到这个数组中
  2. 遍历 node 的子节点
  3. 查看这个子节点是否还有子节点,如果没有直接存储到数组中,如果有就继续递归
var arr = [];
function byClass(node, className, arr){
    //得到传入节点的所有子节点
    var lists = node.childNodes;
    for(var i = 0;i< lists.length;i++){
        //判断是否有相同className元素
        if(arr[i],className == className){
            arr.push(arr[i]);
        }
        //判断子节点是否还有子节点
        if(arr[i].childNodes.length > 0){
            byClass(arr[i],className,arr);
        }
    }
}
复制代码

转载于:https://juejin.im/post/5d54f867f265da03d0639a82

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值