一、多进程
1.1 多进程的概念
由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
但在使用这些共享API的时候,我们要注意以下几点:
a、在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
b、Windows系统下,需要注意的是要想启动一个子进程,必须加上 if __name__ == "__main__",进程相关的要写在这句下面。
1.2 创建进程的两种方式
直接创建:
1 from multiprocessing import Process 2 import time 3 def f(name): 4 time.sleep(1) 5 print('hello', name,time.ctime()) 6 7 if __name__ == '__main__': 8 p_list=[] 9 for i in range(3): 10 p = Process(target=f, args=('alvin',)) 11 p_list.append(p) 12 p.start() 13 for i in p_list: 14 p.join() 15 print('end')
类式调用:
1 from multiprocessing import Process 2 import time 3 4 class MyProcess(Process): 5 def __init__(self): 6 super(MyProcess, self).__init__() 7 #self.name = name 8 9 def run(self): 10 time.sleep(1) 11 print ('hello', self.name,time.ctime()) 12 13 14 if __name__ == '__main__': 15 p_list=[] 16 for i in range(3): 17 p = MyProcess() 18 p.start() 19 p_list.append(p) 20 21 for p in p_list: 22 p.join() 23 24 print('end')
二、Process类
2.1 构造方法
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
2.2 实例方法
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
2.3 属性
authkey
daemon:和线程的setDeamon功能一样
exitcode(进程在运行时为None、如果为–N,表示被信号N结束)
name:进程名字。
pid:进程号。
1 import time 2 from multiprocessing import Process 3 4 def foo(i): 5 time.sleep(1) 6 print (p.is_alive(),i,p.pid) 7 time.sleep(1) 8 9 if __name__ == '__main__': 10 p_list=[] 11 for i in range(10): 12 p = Process(target=foo, args=(i,)) 13 #p.daemon=True 14 p_list.append(p) 15 16 for p in p_list: 17 p.start() 18 # for p in p_list: 19 # p.join() 20 21 print('main process end')
三、进程间通信
不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:
3.1 Queues 使用方法跟threading里的queue类似 --> 将q作为参数传递给子进程。
1 from multiprocessing import Process, Queue 2 3 def f(q,n): 4 q.put([42, n, 'hello']) 5 6 if __name__ == '__main__': 7 q = Queue() 8 p_list=[] 9 for i in range(3): 10 p = Process(target=f, args=(q,i)) 11 p_list.append(p) 12 p.start() 13 print(q.get()) 14 print(q.get()) 15 print(q.get()) 16 for i in p_list: 17 i.join()
3.2 Pipes --> 通过管道Pipe实现。
1 from multiprocessing import Process, Pipe 2 3 def f(conn): 4 conn.send([42, None, 'hello']) 5 conn.close() 6 7 if __name__ == '__main__': 8 parent_conn, child_conn = Pipe() 9 p = Process(target=f, args=(child_conn,)) 10 p.start() 11 print(parent_conn.recv()) # prints "[42, None, 'hello']" 12 p.join()
3.3 数据共享(Manager)
Manager()返回的管理器对象控制一个服务器进程,该进程保存Python对象并允许其他进程使用代理操作它们。
1 from multiprocessing import Process, Manager 2 3 def f(d, l,n): 4 d[n] = '1' 5 d['2'] = 2 6 d[0.25] = None 7 l.append(n) 8 print(l) 9 10 if __name__ == '__main__': 11 with Manager() as manager: 12 d = manager.dict() 13 14 l = manager.list(range(5)) 15 p_list = [] 16 for i in range(10): 17 p = Process(target=f, args=(d, l,i)) 18 p.start() 19 p_list.append(p) 20 for res in p_list: 21 res.join() 22 23 print(d) 24 print(l)
3.4 进程同步
Without using the lock output from the different processes is liable to get all mixed up. 如果不使用来自不同进程的锁定输出,则可能会混淆不清。
1 from multiprocessing import Process, Lock 2 3 def f(l, i): 4 l.acquire() 5 try: 6 print('hello world', i) 7 finally: 8 l.release() 9 10 if __name__ == '__main__': 11 lock = Lock() 12 13 for num in range(10): 14 Process(target=f, args=(lock, num)).start()
3.5 进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
1 from multiprocessing import Process,Pool 2 import time 3 4 def Foo(i): 5 time.sleep(2) 6 return i+100 7 8 def Bar(arg): 9 print('-->exec done:',arg) 10 11 pool = Pool(5) 12 13 for i in range(10): 14 pool.apply_async(func=Foo, args=(i,),callback=Bar) 15 #pool.apply(func=Foo, args=(i,)) 16 17 print('end') 18 pool.close() 19 pool.join()
四、协程
协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。
协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:
协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
协程的好处:
- 无需线程上下文切换的开销
- 无需原子操作锁定及同步的开销
- "原子操作(atomic operation)是不需要synchronized",所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
- 方便切换控制流,简化编程模型
- 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。
缺点:
- 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
- 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序
4.1 使用yield实现协程操作
1 import time
2 import queue
3 def consumer(name): 4 print("--->starting eating baozi...") 5 while True: 6 new_baozi = yield 7 print("[%s] is eating baozi %s" % (name,new_baozi)) 8 #time.sleep(1) 9 10 def producer(): 11 12 r = con.__next__() 13 r = con2.__next__() 14 n = 0 15 while n < 5: 16 n +=1 17 con.send(n) 18 con2.send(n) 19 print("\033[32;1m[producer]\033[0m is making baozi %s" %n ) 20 21 22 if __name__ == '__main__': 23 con = consumer("c1") # 创建生成器对象 24 con2 = consumer("c2") # 创建生成器对象 25 p = producer() # 执行producer函数
协程标准定义,即符合什么条件就能称之为协程:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 一个协程遇到IO操作自动切换到其它协程
基于上面这4点定义,我们刚才用yield实现的程并不能算是合格的线程,因为它有一点功能没实现。
4.2 Greenlet
greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator
1 # -*- coding:utf-8 -*- 2 3 4 from greenlet import greenlet 5 6 def test1(): 7 print(12) 8 gr2.switch() 9 print(34) 10 gr2.switch() 11 12 def test2(): 13 print(56) 14 gr1.switch() 15 print(78) 16 17 gr1 = greenlet(test1) 18 gr2 = greenlet(test2) 19 gr1.switch()
感觉确实用着比generator还简单了,但好像还没有解决一个问题,就是遇到IO操作,自动切换,并不对。
4.3 Gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
1 import gevent 2 3 def func1(): 4 print('\033[31;1m李闯在跟海涛搞...\033[0m') 5 gevent.sleep(2) 6 print('\033[31;1m李闯又回去跟继续跟海涛搞...\033[0m') 7 8 def func2(): 9 print('\033[32;1m李闯切换到了跟海龙搞...\033[0m') 10 gevent.sleep(1) 11 print('\033[32;1m李闯搞完了海涛,回来继续跟海龙搞...\033[0m') 12 13 14 gevent.joinall([ 15 gevent.spawn(func1), 16 gevent.spawn(func2), 17 #gevent.spawn(func3), 18 ])
输出:
李闯在跟海涛搞...
李闯切换到了跟海龙搞...
李闯搞完了海涛,回来继续跟海龙搞...
李闯又回去跟继续跟海涛搞...
五、补充
5.1 同步与异步的性能区别
1 import gevent 2 3 def task(pid): 4 """ 5 Some non-deterministic task 6 """ 7 gevent.sleep(0.5) 8 print('Task %s done' % pid) 9 10 def synchronous(): 11 for i in range(1,10): 12 task(i) 13 14 def asynchronous(): 15 threads = [gevent.spawn(task, i) for i in range(10)] 16 gevent.joinall(threads) 17 18 print('Synchronous:') 19 synchronous() 20 21 print('Asynchronous:') 22 asynchronous()
上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn
。 初始化的greenlet列表存放在数组threads
中,此数组被传给gevent.joinall
函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
5.2 遇到IO阻塞时会自动切换任务(gevent 库中的 monkey 方法)--> 补丁
------->能够最大程度监听IO阻塞,提高效率。
1 from gevent import monkey 2 monkey.patch_all() 3 4 import gevent 5 from urllib.request import urlopen 6 7 def f(url): 8 print('GET: %s' % url) 9 resp = urlopen(url) 10 data = resp.read() 11 print('%d bytes received from %s.' % (len(data), url)) 12 13 gevent.joinall([ 14 gevent.spawn(f, 'https://www.python.org/'), 15 gevent.spawn(f, 'https://www.yahoo.com/'), 16 gevent.spawn(f, 'https://github.com/'), 17 ])