2018冬令营模拟测试赛(九)

2018冬令营模拟测试赛(九)

[Problem A]王子

试题描述

不是所有王子都会遇见自己的中关村,主公,公主。

从前有个王子姓王,王王子遇到了一位美丽的公主,她的名字当然是公公主啦。

王王子对公公主一见钟情,他想方设法地去讨好公公主, 他准备了 \(N\) 个节目依次表演给公主看,每个节目他可以倒立表演,或者正常表演。王王子非常聪明,所以他总是能预估出每个节目的每种表演形式能刷多少好感度,我们记第i个节目倒立表演能增加 \(A_i\) 的好感度,正常表演能增加 \(B_i\) 的好感度。

这个公公主也不是一个省油的灯,他(没打错)看节目的时候既不喜欢太循规蹈矩,也不喜欢太标新立异。准确的说,他看的王子表演的任意连续 \(K\) 个节目里面,至少有 \(P\) 个倒立表演的节目,\(Q\) 个正常表演的节目。

王王子想知道,在满足公公主的特殊癖好的前提下,他最多能刷多少的好感度。

输入

第一行四个整数 \(N,K,P,Q\)

接下来N行每行两个整数表示 \(A_i\)\(B_i\)

输出

一行一个正整数表示答案。

输入示例
2 2 1 1
2 3
3 5
输出示例
7
数据规模及约定

对于 \(20\%\) 的数据,\(N < 16\)

对于另外 \(30\%\) 的数据, \(K < 10\)

对于另外 \(30\%\) 的数据, \(A_i, B_i < 4\)

对于 \(100\%\) 的数据, \(0 < N < 200, 0 < A_i, B_i < 10000000, 0 ≤ P + Q ≤ K ≤ N\)

题解

这题还是可以不用线性规划做,直接上上下界费用流。

一开始先假设所有节目都是正常表演(即所有节目收益都为 \(B_i\)),然后将一些节目调整成倒立表演。那么这时一个区间的限制就是“可以调整的数量在区间 \([P, K - Q]\) 中”。于是我们就可以把所有的区间串起来,每个区间所对应的边的流量限制为 \([P, K - Q]\),节目 \(i\) 就将它影响到的区间圈在内加一条容量限制为 \(1\) 的费用为 \(A_i - B_i\) 的边。然后跑一下上下界最大费用流即可。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)

int read() {
    int x = 0, f = 1; char c = getchar();
    while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

#define maxn 220
#define maxm 1320
#define oo 2147483647
#define LL long long

struct Edge {
    int from, to, flow, cost;
    Edge() {}
    Edge(int _1, int _2, int _3, int _4): from(_1), to(_2), flow(_3), cost(_4) {}
};
struct ZKW {
    int n, m, s, t, cost, ans, head[maxn], nxt[maxm];
    Edge es[maxm];
    bool inq[maxn];
    int d[maxn], Q[maxn], hd, tl;
    bool vis[maxn];
    
    void init() {
        ans = m = 0; memset(head, -1, sizeof(head));
        return ;
    }
    void setn(int _) {
        n = _;
        return ;
    }
    
    void AddEdge(int a, int b, int c, int d) {
        es[m] = Edge(a, b, c, d); nxt[m] = head[a]; head[a] = m++;
        es[m] = Edge(b, a, 0, -d); nxt[m] = head[b]; head[b] = m++;
        return ;
    }
    
    int Nxt(int u) { return (u + 1) % maxn; }
    bool BFS() {
        rep(i, 1, n) d[i] = oo;
        d[t] = 0;
        hd = tl = 0; Q[tl = Nxt(tl)] = t; inq[t] = 1;
        while(hd != tl) {
            int u = Q[hd = Nxt(hd)]; inq[u] = 0;
            for(int i = head[u]; i != -1; i = nxt[i]) {
                Edge& e = es[i^1];
                if(e.flow && d[e.from] > d[u] + e.cost) {
                    d[e.from] = d[u] + e.cost;
                    if(!inq[e.from]) inq[e.from] = 1, Q[tl = Nxt(tl)] = e.from;
                }
            }
        }
        if(d[s] == oo) return 0;
        cost = d[s];
        return 1;
    }
    
    int DFS(int u, int a) {
        if(u == t || !a) return ans += cost * a, a;
        if(vis[u]) return 0;
        vis[u] = 1;
        int flow = 0, f;
        for(int i = head[u]; i != -1; i = nxt[i]) {
            Edge& e = es[i];
            if(d[e.to] == d[u] - e.cost && (f = DFS(e.to, min(a, e.flow)))) {
                flow += f; a -= f;
                e.flow -= f; es[i^1].flow += f;
                if(!a) return flow;
            }
        }
        return flow;
    }
    
    int MaxFlow(int _s, int _t) {
        s = _s; t = _t;
        int flow = 0, f;
        while(BFS())
            do {
                memset(vis, 0, sizeof(vis));
                f = DFS(s, oo);
                flow += f;
            } while(f);
        return flow;
    }
} sol;

int ind[maxn];

int main() {
    int n = read(), len = read(), P = read(), Q = read(), S = n - len + 3, T = S + 1, sum = 0, cost = 0;
    sol.init(); sol.setn(T);
    rep(i, 1, n) {
        int A = read(), B = read(), l = max(i - len + 1, 1), r = min(i + 1, n - len + 2);
        if(B > A) sol.AddEdge(r, l, 1, B - A);
        else sol.AddEdge(l, r, 1, A - B), ind[l]++, ind[r]--, cost += B - A;
        sum += B;
    }
    rep(i, 1, n - len + 1) sol.AddEdge(i, i + 1, len - P - Q, 0), ind[i+1] += P, ind[i] -= P;
    rep(i, 1, n - len + 2) {
        if(ind[i] > 0) sol.AddEdge(S, i, ind[i], 0);
        if(ind[i] < 0) sol.AddEdge(i, T, -ind[i], 0);
    }
    
    sol.MaxFlow(S, T);
    printf("%d\n", sum - (sol.ans + cost));
    
    return 0;
}

[Problem B]遇见

试题描述

啊写背景好累.

有一个长度为 \(N\) 的序列,求这个序列有多少个区间,满足所有在这个区间里出现过的数,他们的出现次数都是奇数次(没出现过的数不考虑在内)。

由于答案不会太大,我们就不取模了。

输入

第一行一个整数 \(N\)

接下来一行 \(N\) 个整数表示这个序列,第 \(i\) 个数是序列的第 \(i\) 个元素 \(A_i\)

输出

一行一个整数表示答案

输入示例
4
2 2 2 3
输出示例
7
数据规模及约定

对于 \(20\%\) 的数据,\(N \le 500\)

对于 \(40\%\) 的数据,\(N \le 2000\)

对于另外 \(30\%\) 的数据,\(A_i \le 200\)

对于 \(100\%\) 的数据,\(1 \le N \le 30000\)\(1 \le A_i \le 1000000\)

题解

此题暴力水过。

正解是个 \(O(n \sqrt{n} \mathrm{log}n)\) 的非确定性算法:给每个不同的权值随机安排一个小于 \(2^{64}\) 的权值,然后除第一次出现外每出现一次就异或一次它对应的权值,当权值为 \(0\) 的时候计数;那么就从前往后枚举右端点,每次区间异或、查询多少个全 \(0\) 数,于是分块 + trie 可以实现。

直接贴暴力了。。。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)

int read() {
    int x = 0, f = 1; char c = getchar();
    while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

#define maxn 30010

int n, A[maxn], num[maxn], tot[maxn], tag[maxn];
bool has[maxn], lst[maxn];

int main() {
    n = read();
    rep(i, 1, n) num[i] = A[i] = read();
    
    sort(num + 1, num + n + 1);
    int cn = unique(num + 1, num + n + 1) - num - 1;
    rep(i, 1, n) A[i] = lower_bound(num + 1, num + cn + 1, A[i]) - num;
    dwn(i, n, 1) if(!has[A[i]]) lst[i] = 1, has[A[i]] = 1;
    int cnt = 0, cant;
    rep(l, 1, n) {
        cant = 0;
        rep(r, l, n) {
            int &Tot = tot[A[r]], &Tag = tag[A[r]];
            if(Tag != l) Tag = l, Tot = 1;
            else Tot++;
            if(!(Tot & 1)) {
                cant++;
                if(lst[r]) break;
            }
            else if(Tot > 1) cant--;
            cnt += !cant;
        }
    }
    printf("%d\n", cnt);
    
    return 0;
}

[Problem C]中关村

试题描述

在一个 \(K\) 维空间中,每个整点被黑白染色。对于一个坐标为 \((x_1,x_2,……,x_k)\) 的点,他的颜色我们通过如下方式计算:

1) 如果存在一维坐标是 $0$,则颜色是黑色。

2) 如果这个点是 $(1,1,\cdots,1)$(每一维都是 $1$),这个点的颜色是白色

3) 如果这个点的 $K$ 个前驱(任取一维坐标减一)中的白点有奇数个,那么这个点的颜色就是白色,否则就是黑色。

给出一个 \(K\) 维超矩形,求这个矩形内的白点个数。

输入

第一行一个整数 \(K\)

接下来 \(K\) 行每行两个整数 \(L_i\)\(R_i\) 表示矩形的第 \(i\) 维的坐标范围。

输出

一行一个整数表示答案对 \(998244353\) 取模的结果

输入示例
2
1 3
2 4
输出示例
5
数据规模及约定

对于 \(10\%\) 的数据,矩形内整点个数不超过 \(1000000\) 个。

对于另外 \(15\%\) 的数据,\(K = 2\)

对于另外 \(15\%\) 的数据,\(K = 3\)

对于另外 \(20\%\) 的数据,\(K = 4\)

对于 \(100\%\) 的数据,\(1 \le K \le 9\)\(1 \le L_i \le R_i \le 10^{15}\).

题解

如果我们形象地表示一下题目描述,可以发现是一个 dp,如果我们将白点看成 \(1\),黑点看成 \(0\),那么点 \((x_1, x_2, \cdots , x_K)\) 的值就是从 \((1, 1, \cdots , 1)\)\((x_1, x_2, \cdots , x_K)\) 的不同最短路径数模 \(2\) 的结果。

这个东西可以用组合数算,不难发现如果将所有坐标减 \(1\),那么点 \((x_1, x_2, \cdots , x_K)\) 上的值就是 \(\prod_{i = 1}^K { C_{ \sum_{j = 1}^i {x_j} }^{ x_i } }\),如果这个东西等于 \(1\),当且仅当所有组合数的值都为 \(1\),用 lucas 定理我们可以得到对于 \(K = 2\) 的情况当且仅当 \(x_1\)\(x_2\) 的二进制表示无交集时,\((x_1, x_2)\) 上的值为 \(1\);然后用归纳法可以推导 \(K > 2\) 的情况就是 \(x_1, x_2, \cdots , x_K\) 两两没有交集时该点上的值为 \(1\)

然后就是数位 dp 了,令 \(f(i, S)\) 表示从高往低前 \(i\) 位,状态为 \(S\) 的方案数,\(S\) 是一个三进制数,第 \(i\)\(0\)\(1\)\(2\) 分别表示贴着下界、在上下界之间和贴着上界;转移时枚举一下那个 \(1\) 放在哪一维,或者不放 \(1\),讨论一下特殊情况(如由于下界的限制必须要放 \(1\) 等)。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
#define LL long long

LL read() {
    LL x = 0, f = 1; char c = getchar();
    while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

#define maxn 10
#define maxb 51
#define maxs 262144
#define MOD 998244353

int n, f[maxb][maxs], diff[maxn];
LL L[maxn], R[maxn];

void print(int x) {
    rep(i, 0, n - 1) printf("%d", x >> (i << 1) & 3);
    return ;
}

int main() {
    n = read();
    rep(i, 0, n - 1) L[i] = read() - 1, R[i] = read() - 1;
    
    int all = (1 << n) - 1, mxs = (1 << (n << 1)) - 1;
    f[maxb-1][0] = 1;
    rep(i, 0, n - 1) dwn(b, maxb - 1, 0) if((L[i] ^ R[i]) >> b & 1){ diff[i] = b; break; }
    dwn(b, maxb - 1, 1) rep(s, 0, mxs) if(f[b][s]) {
        // printf("f[%d][", b); print(s); printf("] = %d [%lld, %lld][%lld, %lld]\n", f[b][s], L[0] >> b & 1, R[0] >> b & 1, L[1] >> b & 1, R[1] >> b & 1);
        int must = -1; bool ok = 1;
        rep(i, 0, n - 1) if((s >> (i << 1) & 3) == 0 && (L[i] >> b - 1 & 1)) {
            if(must < 0) must = i;
            else{ ok = 0; break; }
        }
        if(!ok) continue;
        int chgu = 0;
        rep(i, 0, n - 1) if((s >> (i << 1) & 3) == 2 && (R[i] >> b - 1 & 1)) chgu |= 3 << (i << 1);
        if(must >= 0) {
            (f[b-1][s^chgu] += f[b][s]) %= MOD;
            continue;
        }
        rep(i, 0, n - 1) // set bit[i] = 1
            switch(s >> (i << 1) & 3) {
                case 0:
                    if(b > diff[i] && !(R[i] >> b - 1 & 1)) break;
                    if(b > diff[i]){ (f[b-1][s^chgu^(2<<(i<<1))] += f[b][s]) %= MOD; break; }
                    (f[b-1][s^chgu^(1<<(i<<1))] += f[b][s]) %= MOD; break;
                case 1: (f[b-1][s^chgu] += f[b][s]) %= MOD; break;
                case 2:
                    if(!(chgu >> (i << 1) & 3)) break;
                    (f[b-1][s^chgu^(3<<(i<<1))] += f[b][s]) %= MOD;
            }
        (f[b-1][s^chgu] += f[b][s]) %= MOD; // everybody 0
    }
    // rep(s, 0, mxs) if(f[0][s]) printf("f[%d][", 0), print(s), printf("] = %d [%lld, %lld][%lld, %lld]\n", f[0][s], L[0] >> 0 & 1, R[0] >> 0 & 1, L[1] >> 0 & 1, R[1] >> 0 & 1);
    
    int ans = 0;
    rep(s, 0, mxs) (ans += f[0][s]) %= MOD;
    printf("%d\n", ans);
    
    return 0;
}

转载于:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/8203662.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值