torch.max

torch.max()


torch.max(input) -> Tensor

Explation:

​ Returns the maximum value of all elements in the input tensor

Example:

>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.7461, -0.7730,  0.6381]])
>>> torch.max(a)
tensor(0.6381)

torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)

Explation:

​ Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

Parameters:

  • input(Tensor) - the input tensor
  • dim(int) - the dimension to reduce
  • keepdim(bool, optional) - whether the output tensors have dim retained or not. Default: False.
  • out(tuple, optional) - the result tuple of two output tensors (max, max_indices)

Example:

>>> a = torch.randn(4, 4)
tensor([[-0.7037, -0.9814, -0.2549,  0.7349],
        [-0.0937,  0.9692, -0.2475, -0.3693],
        [ 0.5427,  0.9605,  0.2246,  0.3269],
        [-0.9964,  0.6920,  0.7989, -0.2616]])
>>> torch.max(a)
torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
                     indices=tensor([3, 1, 1, 2]))

torch.max(input, other, out=None) ->Tensor

Explation:

​ Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.
\[ out_i = \max(tensor_i, other_i) \]
Parameters:

  • input(Tensor) - the input tensor
  • other(Tensor) - the second input tensor
  • out(Tensor, optional) - the output tensor

Example:

>>> a = torch.randn(4)
>>> a
tensor([ 0.2942, -0.7416,  0.2653, -0.1584])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
>>> torch.max(a, b)
tensor([ 0.8722, -0.7416,  0.2653, -0.1584])

同理,这些方法可推广至torch.min().

转载于:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值