#导入文件包 import numpy as np x = np.random.randint(1,50,[20,1]) y = np.zeros(20) #1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; k =4 def initcen(x,k): return x[:k] #2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类; def nearest(kc, i): d = abs(kc - i) w = np.where(d == np.min(d)) return w[0][0] def xclassify(x, y, kc): for i in range(x.shape[0]): y[i] = nearest(kc, x[i]) return y #3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值; def kcmean(x,y,kc,k): l = list(kc) flag = False for c in range(k): m = np.where(y ==0) n = np.mean(x[m]) if l[c] != n: l[c] = n flag = True print(l,flag) return (np.array(l),flag) #4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2) kc = initcen(x,k) flag = True print(x,y,kc,flag) while flag: y = xclassify(x,y,kc) kc,flag = kcmean(x,y,kc,k) print(y,kc)