描述
涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑i=1n(ai−bi)2∑i=1n(ai−bi)2
,其中 aiai
表示第一列火柴中第 i 个火柴的高度,bibi
表示第二列火柴中第 i 个火柴的高度。
每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
格式
输入格式
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出格式
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果
样例1
样例输入1
4
2 3 1 4
3 2 1 4
样例输出1
1
样例2
样例输入2
4
1 3 4 2
3 2 1 4
样例输出2
2
提示
样例1说明
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
样例2说明
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
数据范围
对于 10%的数据, 1 ≤ n ≤ 10;
对于 30%的数据,1 ≤ n ≤ 100;
对于 60%的数据,1 ≤ n ≤ 1,000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ 2^31 − 1。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct node{
int x;
int s;
}a[100005],b[100005];
int n,k;
long long ans=0;
int f[100005],p[100005];
int comp(node a,node b)
{
return a.s<b.s;
}
void qsort(int s,int t)//归并排序
{
int m,i,j;
if(s==t) return;
m=(s+t)/2;
qsort(s,m);
qsort(m+1,t);
i=s;
j=m+1;
k=s;
while(i<=m&&j<=t)
{
if(f[j]<f[i])
ans+=(m-i+1)%99999997;//i向右移,此时处理
if(f[i]<f[j])
p[k++]=f[i++];//此处不处理,因为跟上面步骤重复了
else
p[k++]=f[j++];
}
while(i<=m)
p[k++]=f[i++];
while(j<=t)
p[k++]=f[j++];
for(i=s;i<=t;i++)
f[i]=p[i];
}
int main()
{
ios::sync_with_stdio(false);
freopen("match.in","r",stdin);
freopen("match.out","w",stdout);
int i,j;
cin>>n;
for(i=1;i<=n;i++)
{
cin>>a[i].s;
a[i].x=i;
}
for(i=1;i<=n;i++)
{
cin>>b[i].s;
b[i].x=i;
}
sort(a+1,a+n+1,comp);
sort(b+1,b+n+1,comp);
for(i=1;i<=n;i++)
f[a[i].x]=b[i].x;//搭桥(最重要的一部,要理解透彻)
qsort(1,n);
cout<<ans%99999997;
return 0;
}