字节跳动面试算法题 一堆火柴棒长度的序列,切分成不下降的火柴棒长度序列,要求切割长度最小

同学问我一个字节跳动的面试的算法问题

昨晚我的一个同学问了我下面这个问题,说是字节跳动面试的题目:

一根火柴能拆成两份,然后放在原处。
拆了的 还可以再拆
最后保证非下降
问 最少要拆几次
比如 3 5 13 9 12 变成 3 5 6 7 9 12。1次就好了


我的第一感觉是这个或许应该可以线性复杂度解决,很有可能是有贪心策略的。
首先想到的是,应该从后面开始扫起,因为前面的火柴棒显然不能超过后面的火柴棒的长度。

然后我发现来可能需要解决一个问题,如果前面的火柴棒比后面的长,那么怎么切分它合适?

一个自然的想法是要让最短的小棒尽可能长,这样对于前面的小棒而言上限就更大一些。显然长度上限越大越好(至少上限大的不会比上限小的差)。

但是,我发现需要考虑一个问题,虽然这样有利于前面的小棒切分数尽可能少,但是对当前的方案来讲,是否存在一种划分方案,它切分的出来的最短小棒虽然更短一些,但是对于前面的小棒的限制效果是一样的(比如最短长棒尽可能长可以达到10 ,而另一种切分方案最短小棒是8,而前面的小棒长度是7,那么10和8对于7的限制效果是一样的),但是切分出来的小棒数目更少。

**稍微一想,直觉上可以看出不存在这种情况。因为如果最短小棒更短的切割方案,直觉上就是切分的比较零碎,那么切分成的小棒数就不应该更少。**当然,这个直觉上是对的结论没有那么显然。所以,我后面的分析去证明了这个结论,即尽可能切的数目小的情况下,最短小棒越长, 切分出来的小棒数越少。

所以问题就变成了,知道小棒原始长度和小棒长度上限,让切分成的最短小棒长度尽可能长,最短小棒可以是多长,以及最少要切几次。

于是就有了下面的子问题A和子问题B.


n = ∑ i k a i ( a i ∈ N + ) n=\sum_{i}^{k}{a_i} \quad (a_i \in N^{+}) n=ikai(aiN+)
则称 a 1 , a 2 , … , a k a_1,a_2,\dots,a_k a1,a2,,ak n n n的一种整数划分。

子问题A(a,b)

输入 a , b ( b > a ) a,b(b>a) a,b(b>a)。问在 b b b的所有划分中,要求划分中的最大数不超过 a a a,最小数最大可以是多少。

即求满足下式最大的 c c c.
b = ∑ i k b i & max ⁡ i k { b i } ≤ a & min ⁡ i k { b i } = c b=\sum_{i}^{k}{b_i} \quad \& \quad \max_{i}^{k}\{b_i\} \le a \quad \& \quad \min_{i}^{k}\{b_i\}=c b=ikbi&imaxk{bi}a&imink{bi}=c

  1. b = k a    ⇒ c = a . b=ka \; \Rightarrow c=a. b=kac=a.
  2. b = k a + r    ( 1 ≤ r ≥ a − 1 ) b=ka+r \; (1 \le r \ge a-1) b=ka+r(1ra1)
    1. k ≥ ( a − 2 ) . k \ge (a-2). k(a2).
      1. 显然 c = a − 1. c=a-1. c=a1.
      2. 先划分成k根a和一根r的小棒,之后,我们只需要将 a − 1 − r ≤ a − 2 ≤ k a-1-r \le a-2 \le k a1ra2k根a长度的小棒每根截取 1 1 1加到 r r r这个小棒即可构造出最小长度为 c = a − 1 c=a-1 c=a1 的划分方案。
      3. a ∤ b ∧ b ≥ ( a − 1 ) 2 ⇒ c = a − 1. a \nmid b \wedge b\ge (a-1)^2 \Rightarrow c=a-1. abb(a1)2c=a1.
    2. k < ( a − 2 ) . k < (a-2). k<(a2). c 0 = ⌊ b k + 1 ⌋ = b    d i v    ( k + 1 ) c_0=\lfloor \frac{b}{k+1} \rfloor = b \; div \; (k+1) c0=k+1b=bdiv(k+1),则 c = c 0 c=c_0 c=c0. 下为证明.
      1. ∵ b > k a \because b > ka b>ka.
        1. 所以拆分的小棒不可能少于 k k k 根.
      2. 假设划分成 p ( p > k ) p(p > k) p(p>k) 根小棒,最短的小棒 c 1 > c 0 c_1 > c_0 c1>c0.
        1. b ≥ p c 1 ≥ ( k + 1 ) ( c 0 + 1 ) b \ge pc_1 \ge (k+1)(c_0+1) bpc1(k+1)(c0+1).
        2. b = c 0 ⋅ ( k + 1 ) + r 0 ( 0 ≤ r 0 < k + 1 ) → b < c 0 ⋅ ( k + 1 ) + ( k + 1 ) = ( c 0 + 1 ) ( k + 1 ) b=c_0 \cdot (k+1)+r_0 (0 \le r_0 < k+1) \rightarrow b < c_0 \cdot (k+1)+ (k+1)=(c_0+1)(k+1) b=c0(k+1)+r0(0r0<k+1)b<c0(k+1)+(k+1)=(c0+1)(k+1).
        3. 显然矛盾。故不存在最小长度大于 c 0 c_0 c0的方案。
      3. 考虑划分成 k + 1 k+1 k+1 根小棒.
        1. 注意有 b = c 0 ⋅ ( k + 1 ) + r 0 ( 0 ≤ r 0 < k + 1 ) b=c_0 \cdot (k+1)+r_0 (0 \le r_0 < k+1) b=c0(k+1)+r0(0r0<k+1).
        2. k + 1 k+1 k+1 c 0 c_0 c0 的小棒,然后剩余的 r 0 r_0 r0 r 0 r_0 r0 根小棒各自加1即可。
        3. 所以存在一种划分方案最短长度为 c 0 c_0 c0.
结论

返回 c c c.


子问题B(a,b,n)

假设拆分可以使用的数限于 [ a , b ] [a,b] [a,b] 之间的正整数,问 n n n 可否实现整数划分,以及划分的根数最小可以是多少?

讨论可以拆分的数 n n n 的情况:
[ a , b ] [ 2 a , 2 b ] [ 3 a , 3 b ] … \left[a,b \right] \\ \left[2a,2b \right] \\ \left[3a,3b \right] \\ \dots \\ [a,b][2a,2b][3a,3b]

$kb \ge (k+1)a \quad(k \in N^{+}) ;\Rightarrow; k \ge \lceil \frac{a}{b-a} \rceil = (b-1); div ; (b-a) $

也就是说 k = ( b − 1 )    d i v    ( b − a ) k=(b-1)\; div \; (b-a) k=(b1)div(ba),可由限于 [ a , b ] [a,b] [a,b] 之间的正整数拆分表示的数落在以下有限个区间内
[ a , b ] [ 2 a , 2 b ] [ 3 a , 3 b ] … [ ( k − 1 ) a , ( k − 1 ) b ] [ k a , + ∞ ] \left[a,b \right] \\ \left[2a,2b \right] \\ \left[3a,3b \right] \\ \dots \\ \left[(k-1)a,(k-1)b \right] \\ \left[ka,+\infty \right] \\ [a,b][2a,2b][3a,3b][(k1)a,(k1)b][ka,+]

另外,显然,假设长度 n n n可以由上述规则进行整数拆分表示,则,如果 n < = m b n<=mb n<=mb,则 n n n一定可以划分成的小棒数一定不超过成 m m m根。如果 ( m − 1 ) b < n < = m b (m-1)b<n<=mb (m1)b<n<=mb则不但可以划分成m根小棒,而且至少需要m根小棒才可以划分。换句话说可能存在多余m根小棒的划分方案,但是一定不存在小于m根的方案,并且一定存在一种方案可以划分成m根。

结论

n n n 可划分,划分的最小根数d满足 ( d − 1 ) ⋅ b < n ≤ d ⋅ b (d-1)\cdot b < n \le d \cdot b (d1)b<ndb,即 d = ⌈ n b ⌉ = ( n + b − 1 )    d i v    b d=\lceil \frac{n}{b} \rceil = (n+b-1) \; div \; b d=bn=(n+b1)divb.

返回是否可以划分及 d d d.


回到原问题

输入数组 a [ 1.. n ] a[1..n] a[1..n].

算法
r=a[n] # 长度上限
count = 0
for i = n downto 1
	if a[i] <= r
		r = a[i] # 更新长度上限
		continue
	l = A(r) # 长度下限
	ok, d = B(l,r,a[i]-l) // 事实上ok肯定是true,因为长度下限是由子问题A求出来的。
	count += d
	r = l # 更新长度上限
print(count)
正确性说明

长度为 n n n 的小棒,划分长度上限为 r r r, 记 l = A ( n ) , d = 1 + B ( l , r , n − l ) l = A(n), d = 1 + B(l,r,n-l) l=A(n),d=1+B(l,r,nl). 则根据以上关于子问题A、B的讨论知道一定存在一种划分方案 b 1 , b 2 , … , b d ( b 1 = l ∧ b i ≥ l ) b_1,b_2,\dots,b_{d} \quad (b_1 = l \wedge b_i \ge l) b1,b2,,bd(b1=lbil).

为了方便讨论,不妨假设划分方案中的数是不下降排列的,即 ∀ i ( i < n ) ⇒ b i ≤ b i + 1 \forall i(i<n) \Rightarrow b_i \le b_{i+1} i(i<n)bibi+1.


假设存在一种划分方案 c 1 , c 2 , … , c m ( m < d ) c_1,c_2,\dots,c_m (m < d) c1,c2,,cm(m<d).

由子问题A可知 c 1 ≤ b 1 c_1 \le b_1 c1b1.

因为子问题B是在限定了长度上下限时,求最小划分根数。故有:

KaTeX parse error: Can't use function '$' in math mode at position 112: …,r,n-b_1) = d-1$̲. 即$m \ge d

显然与假设 m < d m<d m<d矛盾。

结论1

这就说明划分方案
b 1 , b 2 , … , b d ( b 1 = l ∧ b i ≥ l ) b_1,b_2,\dots,b_{d} \quad (b_1 = l \wedge b_i \ge l) b1,b2,,bd(b1=lbil)
既是最短的小棒尽可能长的最佳方案,又是划分划分小棒数尽可能少的最佳方案。


  1. 一方面,对于当前小棒来讲,划分小棒数应该尽可能小;

  2. 另一方面,显然划分的最短小棒棒长会作为前面的小棒的划分上限,所以这个最短小棒越长越好。

而结论1说明我们的划分方案在上面两个方面努力的结果是一致的,所以我们可以采取算法所述的贪心措施。

复杂度

显然子问题A和子问题B都是 O ( 1 ) O(1) O(1).

总的时间复杂度是 O ( n ) O(n) O(n).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值