Description
一年一度的综艺节目《中国新代码》又开始了。Zayid 从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了。
Input
轻车熟路的Zayid 顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的:
总共n 名参赛选手(编号从1 至n)每人写出一份代码并介绍自己的梦想。接着 由所有导师对这些选手进行排名。为了避免后续的麻烦,规定不存在排名并列的情况。
同时,每名选手都将独立地填写一份志愿表,来对总共 m 位导师(编号从 1 至 m)作出评价。志愿表上包含了共m 档志愿。对于每一档志愿,选手被允许填写最多C 位导师,每位导师最多被每位选手填写一次(放弃某些导师也是被允许的)。
在双方的工作都完成后,进行录取工作。每位导师都有自己战队的人数上限,这意味着可能有部分选手的较高志愿、甚至是全部志愿无法得到满足。节目组对”前i 名的录取结果最优“ 作出如下定义:
-
前1 名的录取结果最优,当且仅当第1 名被其最高非空志愿录取(特别地,如 果第1 名没有填写志愿表,那么该选手出局)。
-
前i 名的录取结果最优,当且仅当在前i - 1 名的录取结果最优的情况下:第i 名 被其理论可能的最高志愿录取(特别地,如果第i 名没有填写志愿表、或其所有 志愿中的导师战队均已满员,那么该选手出局)。
如果一种方案满足‘‘前n 名的录取结果最优’’,那么我们可以简称这种方案是最 优的。
每个人都有一个自己的理想值si,表示第i 位同学希望自己被第si 或更高的志愿录取,如果没有,那么他就会非常沮丧。
现在,所有选手的志愿表和排名都已公示。巧合的是,每位选手的排名都恰好与它们的编号相同。
对于每一位选手,Zayid 都想知道下面两个问题的答案:
-
在最优的录取方案中,他会被第几志愿录取。
-
在其他选手相对排名不变的情况下,至少上升多少名才能使得他不沮丧。
作为《中国新代码》的实力派代码手,Zayid 当然轻松地解决了这个问题。不过他还是想请你再算一遍,来检验自己计算的正确性。
Input
每个测试点包含多组测试数据,第一行 2 个用空格隔开的非负整数 T;C,分别表示数据组数、每档志愿最多允许填写的导师数目。
接下来依次描述每组数据,对于每组数据:
-
第1 行两个用空格隔开的正整数n;m。
n;m 分别表示选手的数量、导师的数量。
-
第2 行m 个用空格隔开的正整数:其中第i 个整数为$b_i$ 。
$b_i$ 表示编号为i 的导师战队人数的上限。
-
第3 行至第n + 2 行,每行m 个用空格隔开的非负整数:其中第i + 2 行左起第 j 个数为 $a_{i,j}$ 。
$a_{i,j}$ 表示编号为i 的选手将编号为j 的导师编排在了第$a_{i,j}$志愿。特别地,如果 $a_{i,j}$ = 0,则表示该选手没有将该导师填入志愿表。
在这一部分,保证每行中不存在某一个正数出现超过 C 次(0 可能出现超 过C 次),同时保证所有$a_{i,j}$ <= m。
-
第n + 3 行n 个用空格隔开的正整数,其中第i 个整数为$s_i$ 。
$s_i$ 表示编号为i 的选手的理想值。
在这一部分,保证$s_i$ <= m。
Output
按顺序输出每组数据的答案。对于每组数据,输出2 行:
-
第1 行输出n 个用空格隔开的正整数,其中第i 个整数的意义为:
在最优的录取方案中,编号为i 的选手会被该档志愿录取。
特别地,如果该选手出局,则这个数为m + 1。
-
第 2 行输出 n 个用空格隔开的非负整数,其中第 i 个整数的意义为:
使编号为i 的选手不沮丧,最少需要让他上升的排名数。
特别地,如果该选手一定会沮丧,则这个数为i。
Range
Solution
第一问可以优化,如果第 i 个人的第 j 级志愿不能增广,就直接把这些边删掉。
第二问只需要对于每一个人二分答案 ans[i],把 ans[i] 之前的人全部按照最优方案建出图,然后额外的连上第 i 个人所期望的边,再寻找增广路,就可以完美解决第二问。
上面的算法可以看出来要很多次建图,又因为图最多只有 2n 的点和 nC 的边,那就可以暴力的存n 个图,分别对应前n 个人的最优方案的残余网络,这样可以大大减少建图浪费的时间,并且每次只需要单路增广。
用 vector 貌似会快一些?
复杂度 $O(不慢)$,第一问最多 nm 次找增广路,第二问 nlogn 次,及时删掉没用的边就不会 TLE 。
以上摘自题解
哇这种直接把一张图保存下来的奇技淫巧学到了啊,很强势
upd:再把 to 写成 flow 就剁手
Code
// By YoungNeal #include<queue> #include<vector> #include<cstdio> #include<cctype> #include<cstring> #include<iostream> #define N 505 int T,C; int n,m; int s,t; int maxn; int d[N]; int deg[N]; int ans[N]; int want[N]; int zhiyuan[205][205][205]; struct Edge{ int to,nxt,flow; }; struct Graph{ std::vector<Edge> edge[N]; void add(int x,int y,int z){ edge[x].push_back((Edge){y,edge[y].size(),z}); edge[y].push_back((Edge){x,edge[x].size()-1,0}); } void del(int x,int y){ edge[x].pop_back(); edge[y].pop_back(); } bool bfs(){ std::queue<int> q; q.push(s); memset(d,0,sizeof d); d[s]=1; while(q.size()){ int u=q.front();q.pop(); for(int i=0;i<edge[u].size();i++){ int to=edge[u][i].to; if(d[to]) continue; if(!edge[u][i].flow) continue; d[to]=d[u]+1; q.push(to); if(to==t) return 1; } } return 0; } int dinic(int now,int flow){ if(now==t) return flow; int rest=flow; for(int i=0;i<edge[now].size();i++){ if(!rest) return flow; int to=edge[now][i].to; if(!edge[now][i].flow) continue; if(d[to]!=d[now]+1) continue; int k=dinic(to,std::min(rest,edge[now][i].flow)); if(!k) d[to]=0; rest-=k; edge[now][i].flow-=k; edge[ edge[now][i].to ][ edge[now][i].nxt ].flow+=k; } return flow-rest; } void clear(){ for(int i=1;i<=n+m+2;i++) edge[i].clear(); } }G[N]; void clear(){ maxn=0; s=n+m+1; t=s+1; memset(zhiyuan,0,sizeof zhiyuan); for(int i=0;i<=n;i++) G[i].clear(); } void read(int &x){ x=0;char ch=getchar(); while(!isdigit(ch)) ch=getchar(); while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar(); } bool check(int x,int now){ int gotonow=now-x; if(gotonow<1) return 0; Graph P; P=G[gotonow-1]; P.add(s,now,1); for(int i=1;i<=want[now];i++){ for(int j=1;j<=zhiyuan[now][i][0];j++) P.add(now,zhiyuan[now][i][j]+n,1); } return P.bfs(); } void write(int x){ if(x<0) putchar('-'),x=-x; if(x>9) write(x/10); putchar(x%10+'0'); } signed main(){ read(T);read(C); while(T--){ read(n),read(m); clear(); for(int i=1;i<=m;i++) read(deg[i]),G[0].add(i+n,t,deg[i]); for(int i=1;i<=n;i++){ for(int x,j=1;j<=m;j++){ read(x); if(!x) continue; maxn=std::max(maxn,x); zhiyuan[i][x][++zhiyuan[i][x][0]]=j; } } for(int i=1;i<=n;i++) read(want[i]); for(int i=1;i<=n;i++){ bool o=0; G[i]=G[i-1]; G[i].add(s,i,1); for(int j=1;j<=maxn;j++){ if(!zhiyuan[i][j][0]) continue; for(int p=1;p<=zhiyuan[i][j][0];p++) G[i].add(i,zhiyuan[i][j][p]+n,1); if(G[i].bfs()){ G[i].dinic(s,0x3f3f3f3f); o=1,ans[i]=j,write(j),putchar(' '); } if(o) break; for(int p=1;p<=zhiyuan[i][j][0];p++) G[i].del(zhiyuan[i][j][p]+n,i); } if(!o) ans[i]=m+1,write(m+1),putchar(' '); } putchar('\n'); for(int i=1;i<=n;i++){ if(ans[i]<=want[i]){ write(0),putchar(' '); continue; } int now=-1; int l=1,r=i-1; while(l<=r){ int mid=l+r>>1; if(check(mid,i)) now=mid,r=mid-1; else l=mid+1; } if(now==-1) write(i),putchar(' '); else write(now),putchar(' '); } putchar('\n'); } return 0; }