题意:外卖小哥送餐,在位置s,没走一公里需要时间v,有n个地方的顾客x[i],拥有不同的愤怒值b[i]
在等到餐之前,他们的愤怒按时间增加b[i].(N<=1000),求最后最小的愤怒值之和
思路:区间dp dp[i][j]表示从i到j送餐愤怒之和。但是传统的N^3的复杂度解决不了了
但是可以发现,为了保证最小,在dp[i][j]的时候,他最后一定停在左端点或者右端点
所以dp[i][j][0]在停在左侧,dp[i][j][1]停在右侧
那么由dp[i+1][j]和dp[i][j-1]进行dp
所以按照x的顺序排序进行dp,初始值 就是dp[s][s]=0
但还有一个问题就是由于时间而带来的愤怒值的更改
要再对时间dp是挺麻烦的,我们可以对dp[i][j]处理的时候,将sum[0->i-1] sum[j+1->n]加上去
也就是把它之后的影响先加上
当然还有他本身b[i/j]的愤怒,这样之前处理好愤怒的前缀
#include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define mp make_pair #define fi first #define se second #define all(v) v.begin(),v.end() #define mem(a) memset(a,0,sizeof(a)) //hao const int N = 1004; const ll mod =1e9+7; const int INF = 0x3f3f3f3f; const double eps = 1e-7; struct node{ int x,b; friend bool operator <(node a,node b){ return a.x<b.x; } }; node per[N]; int dp[N][N][2]; int sum[N]; int main(){ int n,v,s; while(scanf("%d %d %d",&n,&v,&s)!=EOF){ for(int i=1;i<=n;++i){ scanf("%d %d",&per[i].x,&per[i].b); } n++; per[n].x = s; per[n].b = 0; sort(per+1,per+1+n); for(int i=1;i<=n;++i){ for(int j=1;j<=n;++j){ dp[i][j][0]=dp[i][j][1]=INF; } } for(int i=1;i<=n;++i) if(per[i].x==s)dp[i][i][0]=dp[i][i][1]=0; for(int i=1;i<=n;++i) sum[i] = sum[i-1]+per[i].b; for(int len=1;len<n;++len){ for(int i=1;i+len<=n;++i){ int j =i+len; dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(per[i+1].x-per[i].x)*(sum[i]+sum[n]-sum[j])); dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(per[j].x-per[i].x)*(sum[i]+sum[n]-sum[j])); dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(per[j].x-per[i].x)*(sum[i-1]+sum[n]-sum[j-1])); dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(per[j].x-per[j-1].x)*(sum[i-1]+sum[n]-sum[j-1])); } } printf("%d\n",min(dp[1][n][0],dp[1][n][1])*v); } return 0; }