zoj 3469 区间dp

题意:外卖小哥送餐,在位置s,没走一公里需要时间v,有n个地方的顾客x[i],拥有不同的愤怒值b[i]

在等到餐之前,他们的愤怒按时间增加b[i].(N<=1000),求最后最小的愤怒值之和

 

思路:区间dp  dp[i][j]表示从i到j送餐愤怒之和。但是传统的N^3的复杂度解决不了了

但是可以发现,为了保证最小,在dp[i][j]的时候,他最后一定停在左端点或者右端点

所以dp[i][j][0]在停在左侧,dp[i][j][1]停在右侧

那么由dp[i+1][j]和dp[i][j-1]进行dp

所以按照x的顺序排序进行dp,初始值 就是dp[s][s]=0

但还有一个问题就是由于时间而带来的愤怒值的更改

要再对时间dp是挺麻烦的,我们可以对dp[i][j]处理的时候,将sum[0->i-1] sum[j+1->n]加上去

也就是把它之后的影响先加上

当然还有他本身b[i/j]的愤怒,这样之前处理好愤怒的前缀

#include<bits/stdc++.h>
using namespace std;

#define ll long long
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(v) v.begin(),v.end()
#define mem(a) memset(a,0,sizeof(a))
//hao
const int N = 1004;
const ll mod =1e9+7;
const int INF = 0x3f3f3f3f;
const double eps = 1e-7;

struct node{
    int x,b;
    friend bool operator <(node a,node b){
        return a.x<b.x;
    }
};
node per[N];
int dp[N][N][2];
int sum[N];

int main(){

    int n,v,s;
    while(scanf("%d %d %d",&n,&v,&s)!=EOF){

        for(int i=1;i<=n;++i){
            scanf("%d %d",&per[i].x,&per[i].b);
        }

        n++;
        per[n].x = s;
        per[n].b = 0;

        sort(per+1,per+1+n);
        for(int i=1;i<=n;++i){
            for(int j=1;j<=n;++j){
                dp[i][j][0]=dp[i][j][1]=INF;
            }
        }
        for(int i=1;i<=n;++i)
            if(per[i].x==s)dp[i][i][0]=dp[i][i][1]=0;

        for(int i=1;i<=n;++i)
            sum[i] = sum[i-1]+per[i].b;


        for(int len=1;len<n;++len){
            for(int i=1;i+len<=n;++i){
                int j =i+len;
                dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(per[i+1].x-per[i].x)*(sum[i]+sum[n]-sum[j]));
                dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(per[j].x-per[i].x)*(sum[i]+sum[n]-sum[j]));
                dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(per[j].x-per[i].x)*(sum[i-1]+sum[n]-sum[j-1]));
                dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(per[j].x-per[j-1].x)*(sum[i-1]+sum[n]-sum[j-1]));
            }
        }
         printf("%d\n",min(dp[1][n][0],dp[1][n][1])*v);
    }

    return 0;
}

 

转载于:https://www.cnblogs.com/wjhstudy/p/10305710.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值