引言
在实际信道中传输数字信号时,由于信道特性不理想及加性噪声的影响,接收端所
收到的数字信号不可避免的的会产生错码,影响通信质量。为了使数字通信系统达到一
定的误比特率指标,首先应合理设计基带信号,选择合适的调制方式、解调方式,采用
均衡,提高发信功率等,但如果误比特率指标仍不能满足要求,则必须采用信道编码。
信道编码也称差错控制编码或纠错编码,它是提高数字通信系统可靠的重要方法。
1948
年,
香农在他的开创性论文
《通信的数学理论》
中首次阐明了在有扰信道中实现可
靠通信的方法,提出了著名的有扰信道编码定理,奠定了纠错编码的基石。如今的纠错
编码已有几十年的历史,从早期的线性分组码,
BCH
码,到后来的
RS
码、卷积码,级
联码、
Turbo
码;从原来的代数译码,到后来的门限译码、软判决译码,到
Viterbi
译码
等;
从注重数学模型、
理论研究,
到注重纠错编码的使用化问题,
并且通过计算机仿真、
搜索好码。无论是从编码方法、译码方法还有研究方法上,纠错编码研究都取得了长足
的发展,并广泛应用于各种通信系统。如今,纠错编码技术已开始渗透带很多领域,如
移动通信中大量利用纠错编码,计算机通信系统中也大量应用纠错编码。
汉明码是
1950
年由
Hamming
首先构造的,
他是一个能够纠正单个错误的线性分组
码,即
SEC
(
Sing Error Correcting
)码,它不仅性能好,而且编译电路非常简单,易于
实现。从
20
世纪
50
年代问世以来,在提高系统可靠性方面获得了广泛的应用。最先用
于磁芯存储器,
60
年代初用于大型计算机,
70
年代在
MOS
存储器得到应用,
后来在中
小型计算机中普遍采用,目前常用在
RFID
系统中多位错误的纠正。汉明码是在原编码
的基础上附加一部分代码,使其满足纠错码的条件,原编码我们可将它称为信息码,附
加码称为校验码
(
又可称为监督码或冗余码
)
。汉明码的最小码间距为
3
,所以只能够检
测到
2
个错误或纠正
1
个错误,编码效率最高。它属于线性分组码,由于线性码的编码
和译码容易实现,至今仍是应用最广泛的一类码。