安振平老师的4908号不等式问题的证明

题目:设正数$a_{1},a_{2},\cdots,a_{n}$满足$a_{1}+a_{2}+\cdots+a_{n}=1$,求证:

$\left(\frac{1}{a_{1}^{3}}-1\right)\left(\frac{1}{a_{2}^{3}}-1\right)\cdots\left(\frac{1}{a_{n}^{3}}-1\right)\geq (n^{3}-1)^{n}$.

证明:由已知及AM-GM不等式可得:

$\frac{1}{a_{i}^{3}}-1=\frac{1-a_{i}^{3}}{a_{i}^{3}}=\frac{(1-a_{i})(1+a_{i}+a_{i}^{2})}{a_{i}^{3}}=\frac{[(a_{1}+a_{2}+\cdots+a_{n})-a_{i}][(a_{1}+a_{2}+\cdots+a_{n})^{2}+a_{i}\cdot(a_{1}+a_{2}+\cdots+a_{n})+a_{i}^{2}]}{a_{i}^{3}}\geq \frac{n-1}{a_{i}^{3}}\left(\frac{a_{1}a_{2}\cdots a_{n}}{a_{i}}\right)^{\frac{1}{n-1}}\left[n^2(a_{1}a_{2}\cdots a_{n})^{\frac{2}{n}}+na_{i}(a_{1}a_{2}\cdots a_{n})^{\frac{1}{n}}+a_{i}^{2}\right]$

$\geq \frac{n-1}{a_{i}^{3}}\left(\frac{a_{1}a_{2}\cdots a_{n}}{a_{i}}\right)^{\frac{1}{n-1}}\cdot  (n^2+n+1)\left[\left[(a_{1}a_{2}\cdots a_{n})^{\frac{2}{n}}\right]^{n^2}\cdot a_{i}^{n}(a_{1}a_{2}\cdots a_{n})\cdot a_{i}^2\right]^{\frac{1}{n^2+n+1}}$

$=\frac{n^3-1}{a_{i}^3}(a_{1}a_{2}\cdots a_{n})^{\frac{2n+1}{n^2+n+1}+\frac{1}{n-1}}a_{i}^{\frac{n+2}{n^2+n+1}-\frac{1}{n-1}}=\frac{n^3-1}{a_{i}^3}(a_{1}a_{2}\cdots a_{n})^{\frac{3n^2}{n^3-1}}a_{i}^{\frac{-3}{n^3-1}}(i=1,2,\cdots,n)$.

于是

$\left(\frac{1}{a_{1}^{3}}-1\right)\left(\frac{1}{a_{2}^{3}}-1\right)\cdots\left(\frac{1}{a_{n}^{3}}-1\right)\geq \frac{n^3-1}{a_{1}^3}(a_{1}a_{2}\cdots a_{n})^{\frac{3n^2}{n^3-1}}a_{1}^{\frac{-3}{n^3-1}}\cdot \frac{n^3-1}{a_{2}^3}(a_{1}a_{2}\cdots a_{n})^{\frac{3n^2}{n^3-1}}a_{2}^{\frac{-3}{n^3-1}}\cdots \frac{n^3-1}{a_{n}^3}(a_{1}a_{2}\cdots a_{n})^{\frac{3n^2}{n^3-1}}a_{n}^{\frac{-3}{n^3-1}}$

$=(n^3-1)^n\frac{(a_{1}a_{2}\cdots a_{n})^{\frac{3n^3}{n^3-1}-\frac{3}{n^3-1}}}{(a_{1}a_{2}\cdots a_{n})^3}=(n^{3}-1)^{n}$.

故原不等式成立.

转载于:https://www.cnblogs.com/ydwu/p/10514347.html

weixin028基于微信小程序小说阅读器设计+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值