安振平老师的4922号不等式问题的证明

题目:设$a,b>0$, $ab=a+b$, 求证:$\sqrt{1+a^2}+\sqrt{1+b^2}\geq 2\sqrt{5}$.

证明:由已知及AM-GM不等式可得: $0<a+b=ab\leq \frac{(a+b)^2}{4}$, 于是

$a+b\geq 4$.                                         (1)

由柯西不等式及不等式(1):

$\sqrt{1+a^2}+\sqrt{1+b^2}=\frac{1}{\sqrt{5}}[\sqrt{(1+4)(1+a^2)}+\sqrt{(1+4)(1+b^2)}]\geq \frac{1}{\sqrt{5}}[(1+2a)+(1+2b)]= \frac{1}{\sqrt{5}}[2+2(a+b)]\geq 2\sqrt{5}$.

故原不等式成立.

 

转载于:https://www.cnblogs.com/ydwu/p/10512890.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值