题目:设$a,b>0$, $ab=a+b$, 求证:$\sqrt{1+a^2}+\sqrt{1+b^2}\geq 2\sqrt{5}$.
证明:由已知及AM-GM不等式可得: $0<a+b=ab\leq \frac{(a+b)^2}{4}$, 于是
$a+b\geq 4$. (1)
由柯西不等式及不等式(1):
$\sqrt{1+a^2}+\sqrt{1+b^2}=\frac{1}{\sqrt{5}}[\sqrt{(1+4)(1+a^2)}+\sqrt{(1+4)(1+b^2)}]\geq \frac{1}{\sqrt{5}}[(1+2a)+(1+2b)]= \frac{1}{\sqrt{5}}[2+2(a+b)]\geq 2\sqrt{5}$.
故原不等式成立.