Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking---随笔

Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking

 DCF跟踪算法因边界效应,鲁棒性较差。SRDCF通过引入空间正则参数有效地提升了跟踪性能,但是增加了算法地复杂性。SRDCF在更新网络参数的时候,需要利用多张图片,这无疑增加了算法地运行效率。本文针对SRDCF,引入temporal regularization让SRDCF可以利用一张图片进行更新网络层参数,这一举措可以增加算法地鲁棒性。本文通过ADMM提高了算法地运行速度。

SRDCF效率低的原因有三:

1、尺度评测

2、空间正则

3、在大量样本上训练

本文通过引入临时正则来只采用单张样本提升训练精度,PA与AMMD来加快整个训练的过程。

在目标外表发生很大的变化的时候,PA算法可以提供一个更鲁棒的模型。

本文的主要贡献如下:

  1. 引入空间正则和临空间正则
  2. ADMM算法极大地提高了跟踪速度
  3. 采用手工特征的STRCF的可以达到实时的跟踪速度,并且跟踪性能很好。

 

转载于:https://www.cnblogs.com/burton/p/10003716.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>