《Learning Spatially Regularized Correlation Filters for Visual Tracking》---文献理解翻译

本文提出了一种空间正则化判别相关滤波器(SRDCF)用于视觉跟踪,解决了标准DCF方法中的边界效应问题。通过引入空间正则化分量,SRDCF能有效学习更大负样本集的分类器,提高跟踪模型的准确性。采用迭代高斯-赛德尔方法实现在线学习,并在多个基准数据集上取得最佳跟踪结果。
摘要由CSDN通过智能技术生成

这是cfnet中的8号引用文献,和13一样都是对边界问题进行阐述的,稍微阅读以一下,有助于理解.

Abstract

准确的视觉跟踪是计算机视觉领域最具挑战性的问题之一。由于训练数据的固有不足一种鲁棒的目标外观模型构建方法至关重要。近年来,有选择地学习相关滤波器(DCF)被成功地应用于跟踪这一问题。这些方法利用训练样本的周期性假设来有效地学习目标邻域内所有patch上的分类器。然而,周期性假设也引入了不必要的边界效应,严重降低了跟踪模型的质量。
我们提出了提出了一种基于空间正则化的判别相关滤波器(SRDCF)。在学习中引入空间正则化分量,根据相关滤波系数的空间位置对其进行惩罚。我们的SRDCF公式允许在更大的负训练样本集中学习相关滤波器,而不会破坏正样本。我们进一步提出了一个优化策略,基于迭代高斯-赛德尔方法,有效地在线学习我们的SRDCF。在四个基准数据集上进行了实验:OTB-2013、ALOV++、OTB-2015和VOT2014。我们的方法在所有四个数据集上实现了最先进的结果。在OTB-2013和OTB-2015上,与现有的最佳跟踪器相比,我们获得的平均重叠精度绝对增益分别为8.0%和8.2%。

1. Introduction

在这里插入图片描述
图1所示。 在标准DCF方法中使用的示例图像(a)和基本的周期假设(b)。周期性假设(b)导致一组有限的负向训练样本,无法捕获真实的图像内容(a),从而导致学习到一个不准确的跟踪模型。

视觉跟踪是一个经典的计算机视觉问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>