一般人会认为学习Python不挑电脑。这个说法其实是错误的。因为Python是开源生态,对类Unix环境比较友好,所以从这一点来讲,mac机器会比较好。
但现在由于win10配置了wsl,相当于同时内置了一个Linux环境,因此学Python也可以使用Windows电脑了。
但根据你学习Python的具体用途,可能还会对电脑有一些要求。具体如何配置电脑和Python开发环境,请参考我的这个回答:
-- 10/27日更新 --
注意到题主是人工智能专业,所以特别补充一点相关信息。
人工智能专业对机器硬件要求比较高。如果是进行机器学习,高配置的笔记本(高内存、高CPU主频和足够的硬盘空间以存放机器学习数据)还是可以的,题主可以参考上面的推荐购买。
但是进入到深度学习部分,目前还没有笔记本电脑可以支持深度学习训练。我在京东上看到的配置最好的一款笔记本电脑,dell的precision,它的显卡是P620,4G显存,这个不能开启深度学习。那么,我们应该如何配置电脑,难道要放弃笔记本电脑,改配台式机吗?
这里推荐一个比较好的方法,即把深度学习训练任务放在国外一些网站提供的免费的GPU资源上去完成。这里推荐几家:Kaggle.com kaggle向用户提供基于jupyter notebook的免费GPU和TPU。首推他们的原因是,他们提供的GPU性能强大,甚至提供了更加强大的TPU。目前向用户免费提供的时间是每周42小时GPU和30小时TPU。这个时间利用好的话,是完全够用的。训练数据和结果上传下载都比较方便。当然上传下载大尺寸的文件,还是申请一个加速器比较好。注意每次使用完毕,记得关闭GPU/TPU加速。
Papaerspace Gradient。他们没有限制GPU使用时长,但是不保证随时随地都能申请到免费GPU。这里是申请入口。
Colab。这个是google提供的,使用GPU虽然是免费的,但文件上传下载略显不方便,你必须得使用google drive。所以放在最后推荐。