d3构建知识图谱可视化_【TCMKB】中医药知识服务平台知识图谱构建和应用

中医药知识服务平台TCMKB利用机器学习和深度学习构建医学知识图谱,涵盖TCMLS、中医养生等多个领域。知识图谱支持疾病诊断、知识问答、养生推荐等应用,采用Neo4j存储,Cypher查询,提升医疗服务质量和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TCMKB

人工智能医疗是人工智能技术在医疗场景中的探索和应用,目前主要的应用领域包括影像识别、语音转化电子病历、辅助检查、病患导诊、远程医疗、辅助诊断等。

中医药信息研究所开发的中医药知识服务平台(简称TCMKB)集成了中医药领域海量的电子文本文件、医案、临床数据等,为知识结构化和知识应用奠定了获取大量知识来源的基础。

在此工作的基础上,知识图谱的应用则多在利用机器学习和深度学习的方法识别医学命名实体, 实体链接和抽取语义关系, 以及医学知识图谱创建、基于知识图谱的知识问答、养生推荐、辅助临床诊断、医学知识检索等方面的应用。

TCMLS

TCMKB上已经建成了中医药语言系统(TCMLS)、中医药文献的知识图谱、中医养生知识图谱、中药研究知识图谱、中医证候知识图谱等医学知识图谱。

“中医药学语言系统(TCMLS)”为构建中医药知识图谱提供了相对完整的框架。

TCMLS是以本体(Ontology)和语义网络的技术理念构建的大型语言系统。

它已发展为一个包含10余万个中医概念以及100余万个语义关系的大型语义网络,基本覆盖了中医药学科的概念体系,在规模和完整性等方面都处于中医界的领先地位[1]。

在知识图谱的技术框架下,将TCMLS或它的某个子本体发展成领域知识库,例如其他中医药领域内的子图谱,以支持知识服务系统的实现。[2]

将医学知识图谱构建技术归纳为五部分,即医学知识的表示、抽取、融合、推理以及质量评估。

通过从大量的结构化或非结构化的医学数据中提取出实体、关系、属性等知识图谱的组成元素,选择合理高效的方式存入知识库。

医学知识融合对医学知识库内容进行消歧和链接,增强知识库内部的逻辑性和表达能力,并通过人工或自动的方式为医学知识图谱更新旧知识或补充新知识。

借助知识推理,推出缺失事实,自动完成疾病诊断与治疗。

质量评估则是保障数据的重要手段,提高医学知识图谱的可信度和准确度。 

其中命令实体识别多采用条件随机场、BiLSTM-CRF等技术,语义关系抽取采用基于机器学习的语义关系抽取、基于深度学习的语义关系抽取,例如卷积神经网络和递归神经网络等。

更多的研究则是直接从互联网专业网站爬取相关专业知识,采用半自动化的方式提取实体和关系,[3]从各个专业网站例如丁香园、百度百科、飞华健康网等专业医学网站爬取了包括疾病、症状、人群、药品、科室、部分、成分等实体,以及各实体间的关系和属性建立知识图谱。

知识图谱的构建

知识服务平台上的知识图谱使用Neo4j图数据库对知识进行存储[4],并采用图模型表示知识实体,为用户呈现知识可视化展示。

再完成基于Cypher语言的医学知识图谱查询,采用Cypher语言对医学知识图谱进行査询、修改、更新等操作,为医学知识图谱引擎提供数据更新、修改、分析的基础。

其在医学知识图谱中应用主要包括增删查改节点和关系,以及最短路径查找。

存储好的知识图谱数据作为知识应用的数据来源,提供医学知识应用服务。

知识图谱的应用

目前医生资源和患者数量供需严重不平衡,距离每 2 千人 1 名家庭医生的目标缺口还有 50 多万,这很难在短时间内填平; 而且现在的家庭医生普遍缺乏良好的培养体制,医疗水平有限,误诊率高达 40%以上[5],这为医学知识图谱留出了很大的发挥空间。

构建医学知识图谱和利用知识图谱的语义推理功能辅助医生对常见疾病进行诊断,有助于优化当前疾病诊断和治疗模式,弥补部分医生医学知识的不足,提高标准化诊疗水平和医生工作效率及质量。[6]

使用于知识图谱的疾病智能诊断算法模型,通过构建症状纯度和疾病信息置信度算法获得准确的疾病诊断。

用户首先根据性别筛选部位,再根据部位选择自己的症状,结合用户选择的年龄、性别、是否孕妇特征,基于推理模型诊断出用户可能患有的疾病,并展示每个疾病的概述、病因、症状、并发症、治疗等详细信息。[7]提出一种融合医学知识图谱与深度学习的疾病诊断方法,该方法的核心是一个知识驱动的卷积神经网络(CNN)模型,通过实体消歧与知识图谱嵌入抽取得到医学知识图谱中结构化的疾病知识,并将病情描述文本中的疾病特征词向量与相应知识实体向量作为CNN的多通道输入,在卷积过程中从语义和知识两个层面表示不同类型疾病。

展望未来

中医药知识服务平台在今后的医学知识图谱的研究中,会继续发挥数据源方面的优势,加强中文专业术语词典和知识库的构建,为中医药领域提供更多规范化的词典和知识库。

在技术层面,努力构建一个半自动化或自动化的可实现知识图谱构建和应用的闭环系统,提高中医药知识服务水平的同时减少图谱的的构建和运维成本。

参考文献

[1] 贾李蓉, 朱玲, 董燕, 等. 2012. 中医药学语言系统评价体系的研究与建立[J].中国数字医学, 07(10):13-16.

[2] 袁凯琦,邓 扬,陈道源,张 冰,雷 凯,沈 颖. 2018. 医学知识图谱构建技术与研究进展[J]. 计算机应用研究, 35(07).

[3] 刘路. 基于医学知识图谱的疾病智能诊断研究[D].湖南大学,2018.

[4] 于彤,刘静*,贾李蓉,张竹绿,杨硕,刘丽红,李敬华,于琦.大型中医药知识图谱构建研究[J].中国数字医学,2015,10(3):80-82.

[5] 顾琳. 基于领域本体的亚健康中医辅助诊断系统的研究及应用 [D]. 昆明: 云南师范大学, 2008.

[6] 张利萍,邢凯,周慧,芮伟康,丁玲.基于病情自述和知识图谱的疾病辅助诊断[J].计算机应用与软件,2018,35(02):161-166.

[7] 刘路. 基于医学知识图谱的疾病智能诊断研究[D].湖南大学,2018.

推荐阅读: 【TCMKB】功能性胃肠病中医药知识应用

【TCMKB】最靠谱的养生知识应用——基于知识图谱的“中医养生”

快速访问中医药知识服务平台,点击下方阅读原文即可↓↓↓

本文作者:孟焕。转载请注明出处。

欢迎访问中医药知识服务平台:http://search.tcmkb.cn:8080

?联系我们:

中国中医科学院中医药信息研究所

中医药大健康智能研发中心

Tel☎:010-64089578

邮箱✉:jiangwei0413@163.com

4072cfddfc30f4d751021f7852ff1689.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值