BZOJ2908: 又是nand

Description

首先知道A nand B=not(A and B) (运算操作限制了数位位数为K)比如2 nand 3,K=3,则2 nand 3=not (2 and 3)=not 2=5。
给出一棵树,树上每个点都有点权,定义树上从a到b的费用为0与路径上的点的权值顺次nand的结果,例如:从2号点到5号点顺次经过2->3->5,权值分别为5、7、2,K=3,那么最终结果为0 nand 5 nand 7 nand 2=7 nand 7 nand 2=0 nand 2=7,现在这棵树需要支持以下操作。
①    Replace a b:将点a(1≤a≤N)的权值改为b。
②    Query a b:输出点a到点b的费用。
请众神给出一个程序支持这些操作。

Input

第一行N,M,K,树的节点数量、总操作个数和运算位数。
    接下来一行N个数字,依次表示节点i的权值。
接下来N-1行,每行两个数字a,b(1≤a,b≤N)表示a,b间有一条树边。
接下来M行,每行一个操作,为以上2类操作之一。
 

Output

对于操作②每个输出一行,如题目所述。

Sample Input

3 3 3
2 7 3
1 2
2 3
Query 2 3
Replace 1 3
Query 1 1

Sample Output

4
7

HINT

 

100%的数据N、M≤100000,K≤32


我们发现nand这个东西啊,excited。。。
既没有结合律又没有交换律。
考虑一般算法,按位拆分,分别维护0依次nand的结果,1依次nand的结构,然后就可以合并了。
因为要考虑方向所以线段树从前到后的nand和从后往前的nand都需要维护。
然后讨论讨论套上树链剖分就行了。
时间复杂度每次O(log^3N)。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
	if(head==tail) {
		int l=fread(buffer,1,BufferSize,stdin);
		tail=(head=buffer)+l;
	}
	return *head++;
}
typedef unsigned int uint;
inline uint read() {
    uint x=0,f=1;char c=Getchar();
    for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
    return x*f;
}
const int maxn=100010;
int n,m,k,first[maxn],next[maxn<<1],to[maxn<<1],e;
void AddEdge(int u,int v) {
	to[++e]=v;next[e]=first[u];first[u]=e;
	to[++e]=u;next[e]=first[v];first[v]=e;
}
int fa[maxn],son[maxn],siz[maxn],dep[maxn];
void dfs(int x) {
	dep[x]=dep[fa[x]]+1;siz[x]=1;
	ren if(to[i]!=fa[x]) {
		fa[to[i]]=x;dfs(to[i]);
		siz[x]+=siz[to[i]];if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
	}
}
int top[maxn],pos[maxn],cnt;
void build(int x,int tp) {
	top[x]=tp;pos[x]=++cnt;
	if(son[x]) build(son[x],tp);
	ren if(to[i]!=fa[x]&&to[i]!=son[x]) build(to[i],to[i]);
}
int lca(int x,int y) {
	int f1=top[x],f2=top[y];
	while(f1!=f2) {
		if(dep[f1]<dep[f2]) swap(f1,f2),swap(x,y);
		x=fa[f1];f1=top[x];
	}
	return dep[x]<dep[y]?x:y;
}
struct Node {
	uint sum0,sum1;
}T[maxn<<2],T2[maxn<<2];
uint all,val[maxn];
uint nand(uint x,uint y) {return (x&y)^all;}
Node operator + (Node A,Node B) {
	Node C;C.sum0=C.sum1=0;
	rep(i,0,k-1) {
		if(A.sum0>>i&1) {
			if(B.sum1>>i&1) C.sum0|=1u<<i;
		}
		else {
			if(B.sum0>>i&1) C.sum0|=1u<<i;
		}
		if(A.sum1>>i&1) {
			if(B.sum1>>i&1) C.sum1|=1u<<i;
		}
		else {
			if(B.sum0>>i&1) C.sum1|=1u<<i;
		}
	}
	return C;
}
void maintain(int o) {
	int lc=o<<1,rc=lc|1;
	T[o]=T[lc]+T[rc];
	T2[o]=T2[rc]+T2[lc];
}
void update(int o,int l,int r,int p,uint v) {
	if(l==r) T[o]=T2[o]=(Node){nand(0,v),nand(all,v)};
	else {
		int mid=l+r>>1,lc=o<<1,rc=lc|1;
		if(p<=mid) update(lc,l,mid,p,v);
		else update(rc,mid+1,r,p,v);
		maintain(o);
	}
}
Node ans;
int flag;
void query(int o,int l,int r,int ql,int qr,int tp) {
	if(ql<=l&&r<=qr) {
		if(!flag) ans=(!tp?T[o]:T2[o]),flag=1;
		else ans=ans+(!tp?T[o]:T2[o]);
	}
	else {
		int mid=l+r>>1,lc=o<<1,rc=lc|1;
		if(!tp) {
			if(ql<=mid) query(lc,l,mid,ql,qr,tp);
			if(qr>mid) query(rc,mid+1,r,ql,qr,tp);
		}
		else {
			if(qr>mid) query(rc,mid+1,r,ql,qr,tp);
			if(ql<=mid) query(lc,l,mid,ql,qr,tp);
		}
	}
}
int Ql[maxn],Qr[maxn],Top;
void query(int x,int y) {
	int z=lca(x,y),f,ql,qr;
	f=top[x];flag=0;
	while(f!=top[z]) {
		ql=pos[f];qr=pos[x];
		query(1,1,n,ql,qr,1);
		x=fa[f];f=top[x];
	}
	ql=pos[z];qr=pos[x];
	query(1,1,n,ql,qr,1);
	f=top[y];
	while(f!=top[z]) {
		ql=pos[f];qr=pos[y];
		Ql[++Top]=ql;Qr[Top]=qr;
		y=fa[f];f=top[y];
	}
	ql=pos[z]+1;qr=pos[y];
	if(ql<=qr) Ql[++Top]=ql,Qr[Top]=qr;
	while(Top) {
		query(1,1,n,Ql[Top],Qr[Top],0);
		Top--;
	}
	printf("%u\n",ans.sum0);
}
int main() {
	n=read();m=read();k=read();
	rep(i,0,k-1) all|=1ll<<i;
	rep(i,1,n) val[i]=read();
	rep(i,2,n) AddEdge(read(),read());
	dfs(1);build(1,1);
	rep(i,1,n) update(1,1,n,pos[i],val[i]);
	rep(i,1,m) {
		char c=Getchar();while(!isalpha(c)) c=Getchar();
		int x=read(),y=read();
		if(c=='Q') query(x,y);
		else update(1,1,n,pos[x],y);
	}
	return 0;
}

  

转载于:https://www.cnblogs.com/wzj-is-a-juruo/p/5585298.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值