2010–2011, NEERC, Northern Subregional C.Commuting Functions

本文探讨了如何基于双射函数的性质解决特定数学问题,通过解析函数间的映射关系来确定函数g的值,利用环的概念简化问题并实现有效求解。
部署运行你感兴趣的模型镜像

C.Commuting Functions 

 

由于要求答案字典序最小,我们肯定希望从g(1)开始对函数g进行赋值,于是又公式f(g(x))=g(f(x)) 设f(x)=i 我们推导出 

由于f是双射,当i逐个遍历1到n时 x也逐个遍历1到n

根据右边的公式,我们可以看出 当g的下标进行f-变换后 对应值也要进行f-变换 

回到f的value list 显然对于任意 f(a)=b 进行若干次f变换后 必有f(c)=a 也就是说 f的value list 是由若干个环组成的

每个环上都有唯一最小值, 且小环可以套到长度为其倍数的大环上

于是我们计算出f中所有长度环的最小值,并用长度小的环更新长度大的环 根据这个环的值对g从前往后赋值即可

代码很简单

#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn=400000+5;
int f[maxn],ff[maxn],g[maxn],minn[maxn];
bool vis[maxn];
int main()
{//freopen("commuting.in","r",stdin);
 //freopen("commuting.out","w",stdout);
 int n;
 scanf("%d",&n);
 int les=-1;
 for(int i=1;i<=n;i++)
 	{
 	 scanf("%d",&f[i]);
 	 ff[f[i]]=i;
 	 g[i]=-1;
 	 vis[i]=0;
 	 minn[i]=-1;
	}
 for(int i=1;i<=n;i++)
 	{
 	 if(vis[i])continue;
 	 vis[i]=true;
 	 int nv=i,len=1,minv=i;
 	 while(ff[nv]!=i)
 	 	{

 	 	 nv=ff[nv];
 	 	 vis[nv]=true;
 	 	 len++;
		}
	 if(minn[len]==-1)minn[len]=i;
	 		else minn[len]=min(i,minn[len]);
	}
 for(int i=1;i<=n;i++)
 	{
 	 if(minn[i]==-1)continue;
 	 for(int j=i;j<=n;j+=i)
 	 	minn[j]=min(minn[j],minn[i]);
	}
 for(int i=1;i<=n;i++)
 	{
 	 if(g[i]!=-1)continue;
 	 int nv=i,len=1;
 	 while(ff[nv]!=i)
 	 	{
 	 	 nv=ff[nv];
 	 	 len++;
		}
	 
	 g[i]=minn[len];
	 
	 nv=i;
	 int val=g[i];
	 while(ff[nv]!=i)
	 	{
	 	 nv=ff[nv];
	 	 g[nv]=ff[val];
	 	 val=g[nv];
		}
	}
 for(int i=1;i<n;i++)
    printf("%d ",g[i]);
 printf("%d\n",g[n]);
 return 0;
}

  通过这个题 增进了我对双射函数的理解。

 

转载于:https://www.cnblogs.com/heisenberg-/p/6715166.html

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值