题目大意:
在一个横向长度为W,纵向长度为L的台子上,机器人在xr,yr处 ,现在有n个物品,散落在平台上,我们机器人每一次只能拿一个物品,然后需要走到台子的边界扔下去,才能继续拿下一个物品。依次类推,问总路径最短,使得所有物品都扔下去。
思路:
观察到物品个数不多,考虑状压dp,设定Dp【i】【j】表示现在已经处理完状态为i的物品,此时到达了j号物品所在位子的最小花费。
那么不难写出其状态转移方程:Dp【q】【k】=min(Dp【q】【k】,Dp【i】【j】+Dis(j,k))这里Dis(j,k)表示的是我们从j位子,将物品扔下去之后,再走到位子k的最小花费,学过高中数学的同学都不难想到,我们从一个点走到另外一个点之前,需要在一个经过一条坐标轴的点的最短距离,就是其中一个点(j/k)将其按照一个平面对称过去之后,和另外一个点相连的距离。四个面都要做一次,求最小花费。
那么过程维护一下即可。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
struct node
{
double x,y;
} a[25];
double r,c;
double dp[(1<<20)][20];
double dis(int i,int j)
{
double D1=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+((-a[i].y)-a[j].y)*((-a[i].y)-a[j].y));
double D2=sqrt(((-a[i].x)-a[j].x)*((-a[i].x)-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
double D3=sqrt(((c*2-a[i].x)-a[j].x)*((c*2-a[i].x)-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
double D4=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+((2*r-a[i].y)-a[j].y)*((2*r-a[i].y)-a[j].y));
double ans=min(min(D1,D2),min(D3,D4));
return ans;
}
int main()
{
freopen("kitchen.in", "r", stdin);
freopen("kitchen.out", "w", stdout);
while(~scanf("%lf%lf",&c,&r))
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)scanf("%lf%lf",&a[i].x,&a[i].y);
scanf("%lf%lf",&a[0].x,&a[0].y);
int end=(1<<(1+n));
for(int i=0; i<end; i++)
{
for(int j=0; j<=n; j++)
{
dp[i][j]=1000000000000.0;
}
}
dp[1][0]=0;
for(int i=0; i<end; i++)
{
for(int j=0; j<=n; j++)
{
if((i&(1<<j))!=0)
{
for(int k=0; k<=n; k++)
{
if((i&(1<<k))==0)
{
int q=i+(1<<k);
if(i==1)
{
dp[q][k]=min(dp[q][k],dp[i][j]+sqrt((a[j].x-a[k].x)*(a[j].x-a[k].x)+(a[j].y-a[k].y)*(a[j].y-a[k].y)));
}
else
dp[q][k]=min(dp[q][k],dp[i][j]+dis(j,k));
//printf("%d %d %d %d-->%lf\n",q,k,i,j,dp[q][k]);
}
}
}
}
}
double ans=1000000000000.0;
for(int i=1; i<=n; i++)
{
ans=min(dp[end-1][i]+min(min(a[i].x,c-a[i].x),min(a[i].y,r-a[i].y)),ans);
}
printf("%.14f\n",ans);
}
}
/*
3 4
2
1 1
2 3
2 1
*/

本文介绍了一个关于机器人在限定区域内收集并丢弃物品的问题,并通过状态压缩动态规划的方法来寻找最优路径。该方法定义了状态转移方程,并通过代码实现了计算最短路径的过程。
2071

被折叠的 条评论
为什么被折叠?



