2010–2011, NEERC, Northern Subregional K.Kitchen Robot【状压Dp】

本文介绍了一个关于机器人在限定区域内收集并丢弃物品的问题,并通过状态压缩动态规划的方法来寻找最优路径。该方法定义了状态转移方程,并通过代码实现了计算最短路径的过程。



题目大意:

在一个横向长度为W,纵向长度为L的台子上,机器人在xr,yr处 ,现在有n个物品,散落在平台上,我们机器人每一次只能拿一个物品,然后需要走到台子的边界扔下去,才能继续拿下一个物品。依次类推,问总路径最短,使得所有物品都扔下去。


思路:


观察到物品个数不多,考虑状压dp,设定Dp【i】【j】表示现在已经处理完状态为i的物品,此时到达了j号物品所在位子的最小花费。


那么不难写出其状态转移方程:Dp【q】【k】=min(Dp【q】【k】,Dp【i】【j】+Dis(j,k))这里Dis(j,k)表示的是我们从j位子,将物品扔下去之后,再走到位子k的最小花费,学过高中数学的同学都不难想到,我们从一个点走到另外一个点之前,需要在一个经过一条坐标轴的点的最短距离,就是其中一个点(j/k)将其按照一个平面对称过去之后,和另外一个点相连的距离。四个面都要做一次,求最小花费。


那么过程维护一下即可。


Ac代码:


#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
struct node
{
    double x,y;
} a[25];
double r,c;
double dp[(1<<20)][20];
double dis(int i,int j)
{
    double D1=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+((-a[i].y)-a[j].y)*((-a[i].y)-a[j].y));
    double D2=sqrt(((-a[i].x)-a[j].x)*((-a[i].x)-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
    double D3=sqrt(((c*2-a[i].x)-a[j].x)*((c*2-a[i].x)-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
    double D4=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+((2*r-a[i].y)-a[j].y)*((2*r-a[i].y)-a[j].y));
    double ans=min(min(D1,D2),min(D3,D4));
    return ans;
}
int main()
{
    freopen("kitchen.in", "r", stdin);
    freopen("kitchen.out", "w", stdout);
    while(~scanf("%lf%lf",&c,&r))
    {
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)scanf("%lf%lf",&a[i].x,&a[i].y);
        scanf("%lf%lf",&a[0].x,&a[0].y);
        int end=(1<<(1+n));
        for(int i=0; i<end; i++)
        {
            for(int j=0; j<=n; j++)
            {
                dp[i][j]=1000000000000.0;
            }
        }
        dp[1][0]=0;
        for(int i=0; i<end; i++)
        {
            for(int j=0; j<=n; j++)
            {
                if((i&(1<<j))!=0)
                {
                    for(int k=0; k<=n; k++)
                    {
                        if((i&(1<<k))==0)
                        {
                            int q=i+(1<<k);
                            if(i==1)
                            {
                                dp[q][k]=min(dp[q][k],dp[i][j]+sqrt((a[j].x-a[k].x)*(a[j].x-a[k].x)+(a[j].y-a[k].y)*(a[j].y-a[k].y)));
                            }
                            else
                            dp[q][k]=min(dp[q][k],dp[i][j]+dis(j,k));
                            //printf("%d %d %d %d-->%lf\n",q,k,i,j,dp[q][k]);
                        }
                    }
                }
            }
        }
        double ans=1000000000000.0;
        for(int i=1; i<=n; i++)
        {
            ans=min(dp[end-1][i]+min(min(a[i].x,c-a[i].x),min(a[i].y,r-a[i].y)),ans);
        }
        printf("%.14f\n",ans);
    }
}
/*
3 4
2
1 1
2 3
2 1

*/







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值