题意:一个n * m的棋盘,0或1,每次改变一个格子时同时改变上下左右的格子,问用最少次数将棋盘全变成0的策略。
题解:用二进制压缩第一行更改的状态,之后遍历棋盘,如果当前格子为1则改变下方的格子,记录改变次数最小的状态为ans,最后模拟一次ans状态时的策略并输出。
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<string.h>
#include<math.h>
#include<limits.h>
#include<time.h>
#include<stdlib.h>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define LL long long
using namespace std;
int dir[4][2] = {1, 0, 0, -1, 0, 1, -1, 0};
int n, m;
void change(int MAP[20][20], int i, int j)
{
MAP[i][j] = !MAP[i][j];
for(int k = 0; k < 4; k++)
{
int ti = i + dir[k][0], tj = j + dir[k][1];
if(ti > -1 && tj > -1 && ti < n && tj < m)
MAP[ti][tj] = !MAP[ti][tj];
}
}
int solve(int Map[20][20], int cse)
{
int MAP[20][20];
memcpy(MAP, Map, sizeof MAP);
int res = 0;
int tmp = 0;
while(cse)
{
if(cse & 1)
{
change(MAP, 0, tmp);
res++;
}
tmp++;
cse >>= 1;
}
for(int i = 0; i < n - 1; i++)
{
for(int j = 0; j < m; j++)
{
if(MAP[i][j])
{
change(MAP, i + 1, j);
res++;
}
}
}
for(int i = 0; i < m; i++)
if(MAP[n - 1][i])
return -1;
return res;
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
int MAP[20][20];
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
scanf("%d", &MAP[i][j]);
int cse = 1 << m;
int minn = 10000;
int ans = 0;
for(int i = 0; i < cse; i++)
{
int res = solve(MAP, i);
if(res != -1 && res < minn)
{
minn = res;
ans = i;
}
}
if(minn == 10000)
{
puts("IMPOSSIBLE");
continue;
}
int prt[20][20] = {0};
int tmp = 0;
while(ans)
{
if(ans & 1)
{
change(MAP, 0, tmp);
prt[0][tmp] = 1;
}
tmp++;
ans >>= 1;
}
for(int i = 0; i < n - 1; i++)
{
for(int j = 0; j < m; j++)
{
if(MAP[i][j])
{
change(MAP, i + 1, j);
prt[i + 1][j] = 1;
}
}
}
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
if(j)
printf(" ");
printf("%d", prt[i][j]);
}
puts("");
}
}
return 0;
}